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Abstract: The paper presents an implementation of a set of recursive algorithms and their modifications for 
estimation of the dynamic part of a price model. The reasons for real time model estimation of the sales 
dynamics are considered. As the market behaviour varies a number of modifications are applied to keep the 
estimations’ sensitivity with respect to the current market behaviour. Also problems with applying the 
considered procedures for model updating are discussed and solutions are presented. 
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INTRODUCTION 
The considered demand model is a mathematical relation between the prices, 

discounts, ads and displays of a given product and of its cross related products. The 
updated models are designed to forecast product sales from a selected group of products. 
Usually the products are collected into product categories. In a given store or a group of 
stores such division of the whole set of products is necessary for decreasing the model’s 
parameters dimension in reasonable limits.  

The models discussed in the paper compute the forecasted sales into two steps. First 
step is to estimate the future sales based on static models. The obtained estimates are 
used as an initial forecast of the unit sales. The static part handles the main factors 
gathered by the retailers (such as product price, ads, displays, discounts...). For the initial 
sales forecast is used a modification of the model of Blattberg-Wisniewski.  The second 
step of the forecast provides an improved representation of the market behaviour, taking 
into account the dynamic aspect of the market. This step is a correction of the estimated 
sales using dynamic models. For the second step regression models are used with input – 
the difference between the forecasted sales, computed by the corresponding static models 
and the baseline product sales. The output of the regression models is the corrected unit 
sales forecast. 

This paper is focused on the real time estimation of the second part of the demand 
models. The recursive model updating is necessary because ordinarily are observed 
thousands of products and it makes the identification procedure too slow. Also after the 
model estimation could be applied other actions, such as optimal sales forecast and price 
optimization, so the time for model updating has to be decreased. The recursive 
procedures can not be adjusted manually for a great number of products. This is a 
problem because the models quality strongly depends on the choice of procedures 
parameters maintaining the estimators’ sensitivity for time-varying systems dynamics.  

As the considered system is naturally time-varying (the market behaviour depends on 
a non-stationary environment and the sets of products and cross effects are not fixed too), 
the problem with estimators’ sensitivity is investigated and appropriate solutions are 
presented.  

 
RECURSIVE ESTIMATORS AND THEIR MODIFICATIONS FOR DYNAMIC 

DEMAND MODELS UPDATING 
The presented algorithms use information about the model structure and parameters 

that are obtained by an automatic system identification cycle [3]. This procedure is based 
on running of a set of block-methods for a set of models with different orders. A validation 
criterion is used for the best model determination. The recursive approach presented 
below is a continuation of this block-identification procedure.  
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Recursive estimators 
For updating of the dynamic part of demand models the following algorithms are 

applied [1, 2]: 
• Recursive least squares (RLS) 
• Recursive general least squares (RGLS) 
• Recursive extended least squares (RELS) 
• Modification of the recursive extended least squares method based on a 

posterior error (MRELS) 
• Recursive extended matrix least squares (REMLS) 
• Recursive forecasting error (RFE) for ARMAX models 

Part of the procedures estimates the same type of regression models. These 
estimators are compared and a set of the most appropriate estimators is determined. In 
the last subsection ARMAX models are estimated by RFE method. 

 
Recursive Least Squares 

RLS estimates the parameters of ARX model 

kk
d

kkk euqqByqA += −−− )()( 11 , (1) 
where ku , ky  and ke  are the input, output and the residual in moment k ; d is time delay 

and polynomials )( 1−qAk  and )( 1−qBk  are of orders na  and nb  respectively. The vector 
form of (1) is 
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are the vector of model parameters and the regression vector respectively.  

The algorithm consists of the following steps: 
1. Computing the error based on 1

ˆ
−kθ : 1

ˆ
−−= k
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2. Kalman gain determination:  1
11 )1( −
−− += kk

T
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3. Updating the parameter vector:  kkkk G εθθ += −1
ˆˆ  

4. Updating the covariance matrix: 1)( −−= k
T
kkk PGIP ϕ  

The initial conditions of the recursive procedure are: 
• Initial parameters estimation is chosen to be *

00
ˆ θθ = , where *

0θ  is an estimation 
obtained by the identification cycle for data sets with maximum length 0N  

• Initial regression vector is constructed based on the last available data 

• Initial value of the covariance matrix is [ ] 1
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Recursive General Least Squares 
If the residual is a colour noise (in this case it will be denoted by kce , ), the above 

algorithm provides biased estimations. To avoid this problem, different modification of RLS 
can be applied.  

In RGLS, additional forming filter is applied to take into account the colour dynamics 
of kce , . The system behaviour is presented by ARARX model 
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= . The vector form of the regression equation is 
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The above equation can be written as 
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The vector form of filter’s regression equation is 

kkd
T

kdkc ee += ,,, θϕ . (5) 
The filter’s parameter vector and the corresponded regression vector are  

[ ]Tkndkkkd ddd ,,2,1, K=θ  and [ ]Tndkckckckd eee −−− −−−= ,2,1,, Kϕ . 
RGLS is reduced to two RLS estimators applied to models (4) and (5). The initial 
conditions are chosen in the same way as in RLS. 
 
Recursive Extended Least Squares  

RELS is a method that estimates ARMAX models 

kkk
d

kkk eqCuqqByqA )()()( 111 −−−− += . (6) 
Here the vector of model parameters and the regression vector are extended with the filter 
parameters and the values of ke  respectively, i.e. 
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The obtained model form is the same as (2), but kθ  and kϕ  have different structures. The 
process ke  represents all uncertainties such as measurement noise and unmodelled 

system dynamics. If kθ̂  is not optimal, the system dynamics, which is not accounted in the 
current model leads to colour residual. To generate the regression vector an estimation of 

ke  is necessary. In RELS ke  is replaced by 1
ˆ
−−= k

T
kkk y θϕε . 

 

Modification of RELS using a posterior error 
Other variant to construct kϕ  is to use the posterior error k

T
kkkp y θϕε ˆ

, −= . 
This modification has better performance as kp,ε  is a more precise estimation of ke  than 

kε  used in the standard RELS. 
 

Recursive Extended Matrix Least Squares  
REMLS is a method that estimates ARARMAX models  
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To obtain the vector form of the regression equation, the vector of optimal model 
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parameters and the regression vector are extended with the filter parameters and the 
values of kce ,  and ke  respectively, i.e. 
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The obtained model form is the same as (2), but kθ  and kϕ  have different structures 
again. Here kce ,  and ke  are replaced by their estimates kε  and kc,ε  computed as 

kab
T

kabkkc y ,,, θ̂ϕε −=  and kcd
T

kcdkck ,,, θ̂ϕεε −= . 
 
Recursive Forecasting Error Method 

The applied RFE is deducted for ARMAX model estimation. The difference between 
RFE and RELS is in the regression vector, which (for ARMAX models) is filtered with a 
forming filter, i.e. 

)( 1
,

−= qCkkkf ϕϕ . 
For constructing the regression vector kϕ  again the posterior error kp,ε  is used as an 
estimation of ke . 

To avoid obtaining of unstable models during the recursive estimation, an additional 
procedure [2] for each algorithm is applied. At each time instant a model stability check is 
applied. If the current model is unstable, the roots of the characteristic polynomial are 
shrinked in the unit circle. 
 
Modifications of the Recursive Estimators  

The estimators’ sensitivity depends on the covariance matrix kP . If the elements of 

kP  are too small, the algorithm becomes inertial with respect to the new data and the rate 
of parameters updating decreases. The following modifications are related to changes in 
the updating rule of the covariance matrix in such a way that the elements of kP  are big 
enough to maintain the estimators’ sensitivity. For kP  can be written  

.
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The following modifications are applied for each estimator [2]: 
• Modification with adding of a positive definite matrix to the covariance matrix 
• Modification with a constant forgetting factor 
• Modification with a variable forgetting factor  
• Modification with a constant trace of the covariance matrix 
• Modification with a constant covariance matrix 
 

Modification with adding of a constant positive definite matrix to the covariance matrix 
The updating equation of the covariance matrix in this modification is 

S
P
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PP
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if min1)( trPPtr k ≤− , where mintrP  is the lowest limit of the )(Ptr . If min1)( trPPtr k >− , the 
covariance matrix is updated by (8). 
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Modification with a constant forgetting factor 
The equation (8) in this modification has the form 
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The factor cρ  is a positive number, but less then 1. If 1=cρ , the above equation becomes 
the same as (8). With decreasing of cρ , the estimations’ sensitivity with respect to data 

increases, but in this case kθ̂  is more sensitive to the noise. Also in some cases the 
procedure can become unstable, what is a disadvantage of this modification.  
 
Modification with a variable forgetting factor 

The disadvantage of the above modification can be avoided with the variable 
forgetting factor. The equation (8) in this modification has the next form 
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The variable forgetting factor k,νρ  can be determined in different ways. An appropriate 
updating rule is 

2
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EN  is the effective observation interval and 2
eσ  is the variance of ke . One disadvantage of 

the procedure is that an increase of ke  can be caused by other factors that have an 
influence on the residual, but not by changes in the system dynamics. In this case the 
estimation error will increase in spite of the time-invariant character of the system 
behaviour. The concrete realization uses a floating window for recursive determination of 
the variance of ke . 
 
Modification with a constant trace of the covariance matrix 

This modification provides a constant estimators’ sensitivity. kP  is updating from 
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where kρ  is  
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Modification with a constant covariance matrix 

In this case 01 PPP kk === − K . This modification is simple and useful, but it is sensitive 
to the choice of 0P . If the elements of 0P  are too small the procedure will become inertial. 

 
TEST DESCRIPTION AND RESULTS 
The presented above algorithms are tested with a real dataset containing data for a 

number of 21 products. The information about the prices, discounts, ads, displays and 
seals is collected weekly. The observation interval is 2 years. The first 84 weeks are used 
for an initial identification, realised by the mentioned above identification cycle. The 
maximum models’ order was 4, but the maximum order of )( 1−qD  polynomial in ARARX 
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model was 8. The remaining 20 weeks are used for the real-time models estimation. The 
modification with a variable forgetting factor was used to maintain the estimators’ 
sensitivity. For both initial and weekly updated models are determined the values of the 
validation criterion Variance Accounted For (VAF) [4] by using of the last 20 weeks. VAFs 
for both models of each product are compared in Table 1.  

A number of experiments (not discussed here) were undertaken to determine the 
most appropriate estimators and modification. As a result for estimation of ARMAX models 
RFE is chosen and the modification with variable forgetting factor is applied. 

 

 
 

Table 1. 
VAF /Initial 

Models/ 
VAF/Updated 

Models/ 

100.00 99.97 
100.00 99.43 
98.75 99.05 
75.52 75.71 
69.78 70.57 
64.00 62.12 
63.96 62.01 
63.17 65.26 
61.80 65.98 

61.14 58.92 
60.49 58.62 
58.92 58.49 
57.95 57.67 
54.50 53.04 
52.04 51.75 
50.91 50.87 
49.86 49.21 
42.40 48.55 
40.67 40.82 
40.58 48.66 
36.78 42.66 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Sorted values of VAF for the initial 
models (a) and for the updated models (b)

 
CONCLUSIONS AND FUTURE WORK 
In [3] were made important conclusions explaining some specific cases. There were 

considered the reasons for low model accuracy obtained for certain products. 
The main advantages of the recursive approach are the ability to assess the time 

varying system dynamics and also the drastic decrease of the computation time.  
There are cases, where the recursive procedures do not provide model improvement. 

A reason for that could be inappropriate choice of the parameters taking part in (9). It is 
also possible that optimal model type and structure can be different for that period. 

The development of an automatic identification cycle for demand models where the 
static part is skipped is an object of a future work. In these representations the model input 
will be extended with the main significant factors gathered by the retailers. A disadvantage 
of the current demand models is that one regression model is used for representation of 
the whole market dynamics. Significant improvement is expected if apply multiple inputs 
single output (MISO) models as the dynamics between each factor and the unit sales will 
be presented by different dynamic model. The MISO dynamic demand model is a more 
general and closer to the nature of the considered system. 
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