
International Conference on Computer Systems and Technologies - CompSysTech’06

An algorithm for automatic assignment of reviewers to papers

Yordan Kalmukov

Abstract: The paper suggests an algorithm for automatic assignment of reviewers to papers designed
for the purposes of conference management systems. The algorithm provides uniform distribution of papers
to reviewers, i.e. all reviewers have an equal number of papers to review; guarantees that if a paper has at
least one keyword in common with a reviewer, then the paper will have a reviewer assigned to it; runs times
faster comparing to similar algorithms.

Key words: automatic assignment of reviewers to papers, conference management system, paper
submission and review system.

INTRODUCTION
During the last years the conference management software has become widely

popular. 5 years before it has been just an alternative of the traditional way of submitting
papers and reviews by email, but now it tends to be the major way of organizing scientific
conferences. The reasons for its popularity are quite obvious – reduced costs;
convenience for all users; papers and reviews can be easily submitted and updated. But
the biggest benefit is for the organizers of conferences as they have a powerful,
centralized management tool that gives them an access to all papers and reviews from all
over the world at any time [1]. Conference management software automatically calculates
final marks, searches for conflict situations and prepares charts and reports. However as
the number of papers and reviewers gets bigger, the process of manual assignment of
reviewers to papers become harder and harder. That’s why the functionality for automatic
assignment is an important part of every conference management system. A correct and
meaningful automatic assignment can be performed only if reviewers and authors provide
detailed information about their interests, respectively papers. Keywords are commonly
used for expressing areas of interest and describing papers in details. The easiest way of
implementing this “keyword strategy” is giving users an ability to select keywords by using
HTML checkboxes. In this case no string processing or semantic analysis is needed.

Good quality conference management systems, like The MyReview System [2], rely
on well-known algorithms for automatic assignment of reviewers to papers that guarantee
best possible accuracy. These algorithms, however, are very slow. The authors of The
MyReview System propose to system administrators to run the C-based version of the
algorithm if the number of submitted papers gets more that 200. Running the C-based
version (as everything else is written in PHP) makes the system hard to install and
maintain.

This paper suggests an alternative algorithm for automatic assignment of reviewers to
papers that:

Provides uniform distribution of papers to reviewers, i.e. all reviewers have an equal
number of papers to review.
Guarantees that if a paper has at least one keyword in common with a reviewer,
then the paper will have a reviewer assigned to it (feasible if the number of papers
that can be evaluated by that particular reviewer only, are not more than the
maximum allowed number of papers per reviewer).
Runs times faster comparing to similar algorithms.

An algorithm for automatic assignment of reviewers to papers
As mentioned the presented algorithm relies on keywords provided by authors and

reviewers of papers. Using HTML checkboxes to select keywords suggests that there is a
finite set of keywords defined by conference chairs. In most conferences 30 to 35
keywords are enough to describe different thematic fields within a larger category. For

- V.5-1 -

The latest version of the algorithm, better explained and accompanied with pseudo codes, examples and
comprehensive experimental analyses proving its accuracy and complexity, is available here:
Kalmukov, Y. An algorithm for automatic assignment of reviewers to papers. Scientometrics 124,
1811-1850 (2020). https://doi.org/10.1007/s11192-020-03519-0
Full text of the author’s accepted manuscript is available here:
https://www.researchgate.net/
publication/342245629_An_algorithm_for_automatic_assignment_of_reviewers_to_papers

https://www.researchgate.net/publication/342245629_An_algorithm_for_automatic_assignment_of_reviewers_to_papers

International Conference on Computer Systems and Technologies - CompSysTech’06

example let’s take conference on software technologies. Possible keywords are:
databases, artificial intelligence, neural networks, image processing, data security &
integrity and so on. Users are required to select at least n keywords. If the number of
elements within the set is 30, then n = 2 or 3 keywords sounds reasonable. Authors
usually select 4 to 5 keywords while reviewers select even more. Finding the most suitable
reviewer for a paper is easy. Actually the automatic assignment should be very fast and
easy if there were no restrictions in the number of papers per reviewer. As the number of
papers per reviewer is automatically calculated by using (1) the algorithm has to provide a
uniform distribution of papers to reviewers, i.e. all reviewers to have an equal number of
papers to review. The ceil() function rounds the result up to the first integer.

number of papers per reviewer =
ceil((number of papers * number of reviewers per paper) / number of reviewers); (1)

A similarity factor is used to find the most suitable reviewers for each paper. The
similarity factor is defined as:

)(
)(

RjPi

RjPi
PiRj KWKWcount

KWKWcount
SF (2)

where:
PiRjSF - similarity factor between i-th paper and j-th reviewer

PiKW - set of keywords, describing the i-th paper

RjKW - set of keywords chosen by the j-th reviewer
count() - gives the number of elements within a set. When uniting the two sets the
duplicates are ignored, i.e. the result set has unique values only.

KUKWPi and , (3)KUKWRj

where KU is the set of all keywords defined by the conference chairs.
Obviously],[10SFPiRj

PiRjSF shows not only how suitable is the j-th reviewer to evaluate the i-th papers, but how
suitable is the i-th paper to the j-th reviewer as well.
Here is an example:
Let’s assume that conference chairs defined KU = {A, B, C, D, E, F, G, H, I}
KWP = {A, C, F}; KWR1 = {B, C, F, G}; KWR2 = {A, F}
Reviewer 1 (R1) and reviewer 2 (R2) are equally capable of reviewing paper (P), as they
cover 2 of the 3 keywords describing the paper. So, whom the paper should be assigned
to? Let’s turn to the similarity factors. SFPR1 = 2/5; SFPR2 = 2/3. Reviewer 2 (R2) is more
suitable for paper (P) than reviewer 1 (R1). Why!? Because reviewer 1 has selected more
keywords which means he is capable of reviewing more papers. In other words the
probability of finding another paper that could be evaluated by reviewer 1 is bigger than
the probability of finding a paper that could be evaluated by reviewer 2. That’s why
reviewer 2 is better choice for this paper. Assigning reviewer 1 to the paper is wasting of
resources. Don’t forget that there is a limit in the number of papers per reviewer! Think of
what will happen if the next paper (P1) is described by {B, G} and reviewer 1 is busy
evaluating paper P. Then there is nobody to review paper P1.

The algorithm relies on two data structures (PS and RS) loaded with the relevant data
in advance. PS keeps information about all of the papers, while RS have data for all
registered reviewers.

- V.5-2 -

International Conference on Computer Systems and Technologies - CompSysTech’06

PS[index][PaperID]
 [title]
 [author]
 [institution]
 [country]

 [reviewers][] // array of reviewers’
usernames

[category]
[keywords][] // array of keyword

identifiers

RS[username][name]
 [institution]
 [country]

[assignedPapers] // number of
 assigned papers

[categories][] // array of
 category identifiers

[keywords][] // array keyword
 identifiers

The suggested algorithm can be divided into four main steps. At the beginning it
needs to know the similarity factor for every pair paper-reviewer. That’s why it starts with
building a matrix of similarity factors, called K matrix. This is the algorithm’s first step. As
shown on figure 1, the algorithm takes i-th paper and calculates all similarity factors
between that paper and every reviewer, thus forming the K[i] column of the matrix. After
finding all factors relative to i-th paper, the algorithm then sorts K[i] by similarity factor in
descending order, so the most suitable reviewer for i-th paper is on top of the list. The
algorithm then continues with the i+1 paper, forming K[i+1] and so on.

For every paper, i, from PS

For every reviewer, j, from RS

K[i][j][reviewer] = j;
// j is actually a username

K[i][j][SFactor] = calculateSFactor(
PS[i][keywords],
RS[j][keywords]

);

Sort K[i] by similarity factor in
descending order

Step 1

Figure 1. Step 1 – building a matrix of similarity factors

At the end of the first step the K matrix will look like this:

000.13;R30.10;R20.17;R4
000.14;R20.20;R30.18;R3

0.09R50.17;R40.21;R10.30;R40.20;R2
0.14R40.22;R50.25;R40.42;R53805R

2501R2701R2705R5401R4001R
P5P4P3P2P1

;.
.;.;.;.;.

The column number points to the paper data stored within the PS structure. The real paper
identifier can be obtained from PS[i][‘PaperID’].

As a second step the algorithm processes the first row of the matrix (figure 2). The
first row suggests the most suitable reviewer for each paper. In most cases it is impossible
to assign the suggested reviewers directly to the papers, because there may be reviewers

- V.5-3 -

International Conference on Computer Systems and Technologies - CompSysTech’06

yes

no

Non-zero similarity factors between Pi and the
reviewers specified in reviewersToRemove are
deleted from K[i]. If the factor to be deleted is on

top of K[i], then it is not deleted.

Does K[i] have to
be shifted one
position up?

Shift K[i]

yes

Build/modify an associative array called involvedReviewers
having reviewers’ usernames, that appear in the first row of K,
as keys . Array values keep information about paper identifiers
and similarity factors between the reviewers and papers to be

assigned to them.

revUsername = K[i][0][reviewer];
SFactor = K[i][0][SFactor];

index++;
involvedReviewers[revUsername][index][k_pid] = i;
involvedReviewers[revUsername][index][SFactor] =

SFactor + Correction;

no

For every paper, i, from K matrix

Are there
reviewers to be
deleted from K?

Create an emptycolsToShift array. The identifiers of
columns (of K matrix) that have to be shifted one

position up are stored in this array.

For every reviewer, j, from involvedReviewers

Sort involvedReviewers[j] by similarity factor in
descending order.

Calculate the number of papers q that can be
assigned to reviewer j.

q = max. papers per reviewer -
RS[j][assignedPapers];

assignmentReady
== true

assignmentReady = true;

yes

no

Push K[i][0][reviewer] to
PS[i][reviewers]

RS[K[i][0][reviewer]]
[assignedPapers]++;

Shift K[i]

yes

Are there any more
similarity factors for K[i],

excluding K[i][0]*?

no

The first q elements of involvedReviewers[j]
remain untouched, while the others

(those after q) are deleted.

Are there any deleted
elements from

involvedReviewers[j]?

Push j to reviewersToRemove

Paper identifiers of the deleted elements
from involvedReviewers[j] are inserted

into ColsToShift

assignmentReady = false;

For every paper, i, from K matrix

Create an emptyreviewersToRemove array.
Usernames of reviewers, who will be removed from K
during the next pass, will be pushed into this array.

no

yes

Step 2
Step 3

Step 4

Next iteration

* K[i][0] means the very first element of K[i]. The second index in fact is a string username, but by [0] we denote the very first element.

Figure 2. Step 2 – building invlovedReviewers structure; Step 3 – Processing
involvedReviewers and determining which papers to be assigned to reviewers who appear

in the first row of K matrix; Step 4 – finalizing assignments.

- V.5-4 -

International Conference on Computer Systems and Technologies - CompSysTech’06

who are suggested for too many papers, i.e. suggested for more papers than the
maximal allowed number of papers per reviewer. To avoid this problem the algorithm
builds a special data structure called involvedReviewers. It is an associative array. The
keys of this array are reviewers’ usernames that appear in the first row of K. The array
values keep paper identifiers and similarity factors between the reviewer and the papers
suggested to be assigned to him. Here is an example:

 involvedReviewers[‘revUsername’][index][k_pid]
 [SFactor]

 involvedReviewers[‘R1’][1][k_pid] = 2; // this is paper # 2 in K
 [SFactor] = 0.54; // similarity factor between

 // reviewer R1 and paper # 2 (P2)

The similarity factors stored in involvedReviewers structure are modified with a
correction C. The goal of this correction is to improve the assignment and mainly to
guarantee that if a paper has at least one keyword in common with a reviewer, then the
paper will have a reviewer assigned to it (that is possible only if the specified reviewer, or
reviewers, has not exceeded the maximum allowed number of papers per reviewer). The
correction can be divided into two fractions: C = C1 + C2, where C1 is calculated as:
If (number of non-zero SFs == 0) {
 C1 = max; (4)
} elseif (number of non-zero SFs > 2*(revsPerPaper – numberOfRevs for Pi)) {
 C1 = 0; (5)
} else {

3SFs)zero-nonof(number
PiforvsnumberOfRe-errevsPerPap1C (6)

}
- number of non-zero SFs – number of non-zero similarity factors for Pi, excluding the first
element of K[i].
- revsPerPaper – number of reviewers per paper, defined by conference chairs. Usually 2
or 3.
- numberOfRevs for Pi – current number of assigned reviewers to paper Pi.

The specified formulas are practically obtained. If the reviewer on top of K[i] is the
only one reviewer for Pi, then he will be assigned to this paper regardless the similarity
factors between him and the other papers. If there are plenty of reviewers suitable to
review Pi, i.e. plenty of similarity factors in K[i] then the similarity factor stored in
involvedReviewers is not modified with C1, thus C1 = 0.

The idea of C2 is to force the reviewer to be assigned to that paper whose second-
suitable reviewer has much less similarity factor comparing to the first-suitable reviewer.
So C2 is calculated as:
C2 = 2 * (SF of first-suitable reviewer for Pi – SF of second-suitable reviewer for Pi)

If the current pass through step 2 is not the first one there may be busy reviewers, i.e.
reviewers who already have enough papers to review. These reviewers have to be
removed from K as they will never be assigned to any more papers. If there are busy
reviewers theirs usernames should be written in the reviewersToRemove array, formed
during step 3 of the previous pass. So before forming the involvedReviewers structure, the
algorithm first deletes all similarity factors between papers and the reviewers specified in
reviewersToRemove. The reviewers are removed from the whole K matrix except from its
first row. The columns corresponding to papers that will not be assigned to the busy

- V.5-5 -

International Conference on Computer Systems and Technologies - CompSysTech’06

reviewers are shifted one position up. The identifiers of these columns should be inserted
into ColsToShift array during the previous pass through step 3. If K[i] has to be shifted one
position up, but the reviewer on top of K[i] is the only one suitable to review Pi, who left
after deleting the busy reviewers from K, then K[i] is not shifted. Thus during the formation
of involvedReviewers structure the similarity factor between that reviewer (the only one
who left to review Pi) and Pi will be modified with the biggest possible correction, so at step
3 Pi will be assigned to him.

During the 3-rd step (fig. 2) the algorithm processes the involvedReviewers structure
and determines which papers to be assigned to the reviewers who participate in the first
row of K. Here is the explanation of this step by example. If restrictions are “papers per
reviewer = 2” and “reviewers per paper = 2” and the K matrix has the values showed on
the previous page, then after the second step the involvedReviewers will look like this
(similarity factors are modified by C1 + C2):

involvedReviewers[‘R1’] =
{
 P1 => 0.40 + 0.04; / / 0.44
 P2 => 0.54 +0.24; // 0.78
 P4 => 0.27 + 0.25 + 0.10; // 0.62
 P5 => 0.25 + 0.25 + 0.22; // 0.72
}

Then the algorithm sorts involvedReviewers[‘R1’] by similarity factor in descending order,
i.e. involvedReviewers[‘R1’] = { P2, P5, P4, P1 }
As the allowed number of papers per reviewer is 2, only the first two papers (P2 and P5)
are assigned to R1. The identifiers of P4 and P1 are inserted into colsToShift array, thus
the corresponding columns in K (K[4] and K[1]) will be shifted one position up during the
next pass through step 2. Analogically the username of reviewer R1 is pushed to
reviewersToRemove that cause R1 to be removed from K (except from its first row) during
the next pass through step 2.

The same actions are done for the other reviewers as well. If there is at least one
column from K to be shifted up, then the first assignment of reviewers to papers is not
ready and the assignmentReady flag is set to false. The execution then goes back to step
2 until assignmentReady gets true.

At the forth step (fig. 2) the first row of K contains all of the reviewers who will be
assigned to papers 1 to n. The algorithm then passes through all papers, completes the
‘reviewers’ field of PS structure, increments the number of assigned papers for the
specified reviewers within the RS structure and finally deletes the first row of K as
reviewers have been already moved to ‘reviewers’ field of PS.

At the end of the fourth step all papers have 1 or 0 reviewers assigned to them. If
papers have to be evaluated by more reviewers (as they usually have to) step 2 to 4
should be repeated as many times as needed.

Complexity
By analyzing the algorithm it can be estimated at a glance [3] that it runs in

O(P.R.lg(R)), where P – the number of papers; R – the number of reviewers. However the
algorithm’s complexity will be a subject of further theoretical and experimental study.

Experimental results
The algorithm has been tested dozens of times by using randomly generated test

data and several times by using real data fetched from CompSysTech’ 2006 database. All
3 features, given on page 1, have been practically proven.

Unfortunately the suggested algorithm is not directly compared in terms of accuracy
and running time to any other algorithm yet. However there is a table published on the

- V.5-6 -

International Conference on Computer Systems and Technologies - CompSysTech’06

official web site of The MyReview System [2] that shows the execution time for assigning
50 reviewers to 100 papers; 100 reviewers to 150 papers and 150 reviewers to 200
papers. It is written that these results are obtained on a laptop computer. For a comparison
(which of course is not claimed to be correct enough as the two algorithms are tested on
different machines) the suggested algorithm is also run on a laptop computer [4] - 2 GHz
Celeron, 512 MB of RAM, Windows XP, Apache 1.3x, PHP 4.3.4, MySQL 3.23.45.

The results of this comparison experiment are summarized in table 1. As expected
the suggested algorithm runs times faster as it has better asymptotic efficiency than the
optimal-weighted matching algorithm implemented in [2].

Table 1
Optimal weighted matching

algorithm
(The MyReview System)

Algorithm suggested by
Yordan Kalmukov

Number of papers and reviewers Execution time Execution time
100 papers; 50 reviewers 50 sec 2.3 sec
150 papers; 100 reviewers 225 sec 5.5 sec
200 papers; 150 reviewers 300 sec 11 sec

CONCLUSIONS AND FUTURE WORK
The algorithm for automatic assignment of reviewers to papers suggested in this

paper provides an uniform distribution of papers to reviewers; guarantees that if a paper
has at least one keyword in common with a reviewer, then the paper will have a reviewer
assigned to it; runs times faster comparing to other algorithms. All of these are practically
proven.

In the next several months the suggested algorithm will be compared to the optimal
weighted matching algorithm implemented in The MyReview System [2] in terms of
accuracy and running time. Thus both algorithms will be integrated in a single conference
management system in order to share the same input data. Accuracy criteria have to be
defined and analyzed. A possible criterion is the average similarity factor (ASF) for the
assignments. The ASF can be calculated as a sum of similarity factors of all assigned
pairs <paper-reviewer> divided by the number of assignments. The algorithm having the
highest average similarity factor is the most accurate one. But this is a subject of further
study.

REFERENCES
[1] Kalmukov, Y., B. Rachev, A. Smrikarov, About the necessity of building a web-

based conference management system, Annual conference of the University of Ruse,
Ruse 2005

[2] The MyReview System – a conference management system - http://myreview.lri.fr/
[3] Kalmukov, Y., Exploring the asymptotic bounds of the algorithm for automatic

assignment of reviewers to papers suggested by Yordan Kalmukov,
http://ecet.ecs.ru.acad.bg/etndec/JKalmukov/ADWMAasymptoticBounds.doc

[4] Kalmukov, Y., Experimental study of the algorithm for automatic assignment of
reviewers to papers suggested by Yordan Kalmukov,
http://ecet.ecs.ru.acad.bg/etndec/JKalmukov/ADWMAexperimentalStudy.doc

[5] Cormen, T., C. Leiserson, R. Rivest, C. Stein, Introduction to algorithms, Second
edition, The MIT press, England 2001

[6] Sedgewick, R., Algorithms, Addison-Wesley Publishing, USA 1984

ABOUT THE AUTHOR
Yordan Kalmukov, MSc Student, Department of Computing, University of Ruse,

Phone: +359 82 459038, e-mail: JKalmukov@gmail.com

- V.5-7 -

