
International Conference on Computer Systems and Technologies - CompSysTech’06

A Teaching in Operating Systems Tool

Tzanko Golemanov, Emilia Golemanova

Abstract: The paper describes the main features of the integrated environment TOST. The objective
of TOST is to be used in Operating Systems, Parallel Programming and Compilers courses. It has to provide
a better understanding of the studied topics. TOST is intended to give students an operating system inside
view. It includes a multitasking operating system, a compiler for a simple PASCAL-similar programming
language and a machine-language interpreter. TOST compiler prepares code-files of the user programs to
be executed in concurrent mode. Main operating system parameters can be changed dynamically. The
information in basic system tables, variables, memory allocation and addressing can be watched.

Key words: Simulators, Operating Systems, Parallel Programming

INTRODUCTION
The Operating System (OS) is one of the most complicated software products have

ever developed. All its basic algorithms are fundamental for the informatics at all. The OS
solves problems which are area of interest of many other software applications with a
particular purpose. Because of that the Operating Systems course, providing basic
knowledge in computer systems functionality, is one of the fundamentals in computer
specialist’s education.

The common practice at the teaching process is the usage of a commercial OS for
theoretical principles demonstration. It is not always suitable. The need of system safety
and visual experimenting with basic system parameters necessitates applying of
simulators. Unfortunately a bit of existing OS simulators are suitable enough. Some of the
necessary requirements of an OS simulator used in teaching process are:

 to enable students to get an inside view of the basic modules and functionality of
a standard OS;

 to support multitasking and to have possibility of implementing of mutual
exclusion, synchronization and communication of concurrent processes;

 to allow a dynamic change (at any time) of basic OS parameters (Scheduling
Strategy, Memory Management, Quantum Size, Page Size, etc.) [1], as well as those of
the running processes (Priority, Remaining Time, etc.) [1]. This way the students have
possibility to investigate how this modifications affect on the programs execution.

 to have an already known interface, to support a familiar programming language
and to be user-friendly;

 to allow working on accessible hardware platforms.

The considering software system TOST is an integrated environment corresponding
to a great extent to requirements mentioned above. It is used as a teaching tool in the
“Operating Systems” and “Language Processors” courses at the Rousse University “Angel
Kanchev”. Any compatible with IBM PC (MS Windows) platform is suitable for system
functionality.

The integrated environment is developed with a standard multi-window interface
and includes the following main modules:

o a single-user multitasking OS;
o a text editor and compiler to a virtual processor code. There is a simple

PASCAL-oriented programming language for user’s programs definition.
SEMAPHORE and SHERED data types and statements for parallel
programming possibilities are added;

o a virtual processor emulator.

- IV.4-1 -

International Conference on Computer Systems and Technologies - CompSysTech’06

The system enables students:
 to create and run their own programs in concurrent mode;
 to watch system tables data records;
 to change dynamically the main OS parameters and those of the existing

processes.

TOST INTERFACE AND MAIN FACILITIES
Access to the system functions is performed through an integrated multi-window

interface with a main menu, shown on fig.1.

fig.1. TOST main menu

All main operations concerning user programs creating, editing, saving and
compiling are concentrated in Programming item. After the successful compilation, the
object program file is generated (with .COD extension) and it is ready to be running in the
environment. A new process is started through Run at the main menu.

Figure 2 presents the general system view, when in an edit window is placed simple
example program exam.txt, and the initial parameters of a creating process are set before
running in another dialog box.

fig.2. Programming and Run

Programming

Run

System Watch Pause / Resume

Help

System Options

- IV.4-2 -

International Conference on Computer Systems and Technologies - CompSysTech’06

In the Priority, the initial process priority could be entered. The total time for
process execution, entered in Time, is used in some scheduling strategies. Through
Background, the user can specify the process visual mode. Repeated Run will cause
starting of many concurrent processes (each in a separate window) as shown at fig.3.

fig.3 Concurrent processes execution

The real multitasking allows editing, creating and running new programs while some
other processes exist. When more detailed monitoring of running processes is required,
through Pause/Resume a temporal “freezing” can be done.

The main OS parameters could be dynamically changed by System Options item
of the main menu (fig.4).

fig.4. System Options modification

Concurrent
processes

- IV.4-3 -

International Conference on Computer Systems and Technologies - CompSysTech’06

In System Options the user at any time can change:
 system quantum - Quantum Size [ms];
 delay pause in processes running for more detailed tracing - Watch Delay time;
 scheduling strategy – Dispatching;
 number of queues with ready processes - Queues;
 memory management strategy – Memory Management;
 page size of virtual memory - Page size;
 jobs placement strategy at real memory mode – Job Placement;
 page replacement strategy at virtual memory mode - Page Replacement;

These modifications of system parameters allow tracing in real time how each of
them influences on started processes execution.

Watching the dynamics in the contents of some main system tables is another
purpose of the integrated environment. These possibilities could be reached by System
Watch item from the main menu (fig.5).

fig.5. Main System Tables Watch

The Processes table includes the current Process Control Block of each of the
existing concurrent processes. The information is shown in five fields:

 File Name – object file name – file from which the process is started;
 Process ID – unique process identifier – an integer value;
 State – current process state – Ready, Running or Blocked;
 Priority – current process priority – a real value;
 Remaining Time – time, remaining to the process competition;

The Ready table presents information about the processes which are in state
“Ready”. According to the scheduling strategy it is possible to have up to 5 queues with
ready processes with different behaviors (with more I/O or more computing operations).

- IV.4-4 -

International Conference on Computer Systems and Technologies - CompSysTech’06

The identifiers of blocked processes and the names of semaphores/events, relative
to their blocking are recorded in the Blocked table.

Additional information about the memory allocation of processes is given by
Memory Allocation Watch. When this submenu item is selected, the system periodically
scans memory occupation and shows results in another window. The virtual memory
pages addressing is displayed too and this allows real time observation of “temporally
locality” and “space locality” events [1].

Semaphores Watch submenu item could be selected for semaphores values
dynamic watching.

CONCLUSIONS AND FUTURE WORK
The presented system is quite opened and might be evolved on the following

directions:
 developing its own file system with set of organizations and management

strategies;
 adding a spooling-system and functions for peripheral devices control;
 adding complex data types and subroutines in the programming language;
 adding Pascal or C syntax optional usage.

Despite of some limitations, the integrated environment can be used for basic
teaching in “Parallel Programming” too. Many classic example tasks for synchronization
and mutually exclusion, like:

 ”Dining philosophers”;
 ”Sleeping barber”;
 and any variants of "Producer/Consumer" problem
could easy be demonstrated within TOST.

REFERENCES
[1] Tanenbaum, A, S., Modern Operating Systems, Eaglewood Cliffs, NJ, Prentice

Hall, 2001.

ABOUT THE AUTHORS
Principal assistant. Tzanko Golemanov, Department of Computer Systems and

Technologies, University of Rousse, Phone: +359 82 888 681, Е-mail:
TGolemanov@ecs.ru.acad.bg.

Principal assistant. Emilia Golemanova, Department of Computer Systems and
Technologies, University of Rousse, Phone: +359 82 888 681, Е-mail:
EGolemanova@ecs.ru.acad.bg.

- IV.4-5 -

