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OPTIMISATION FOR FERMENTATION FEED PROFILE DETERMINATION 
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Abstract: In recent years the area of Evolutionary Computation has come into its own. Two 

of the popular developed approaches are Genetic Algorithms and Particle Swarm Optimisation, 
both of which are used in optimisation problems. Since the two approaches are supposed to find a 
solution to a given objective function but employ different strategies and computational effort, it is 
appropriate to compare their implementation. A study is presented illustrating the performance of 
both genetic algorithms and particle swarm optimisation, demonstrating their ability to generate a 
fermentation process feed profile based on a number of objective functions. Results demonstrate 
how the learning mechanism developed an optimal feed profile which meets the defined criteria.  
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INTRODUCTION 
Fermentation processes are associated with the production of yeast, 

pharmaceuticals, foods and beverages, chemicals, and bulk enzymes. These processes 
amount to over £1 billion per annum to the UK economy alone, hence there are significant 
cost incentives for improving the profitability and/or efficiency of the processes by 
employing modern approaches, such as artificial intelligence techniques. The fermentation 
of Saccharomyces cerevisiae is especially problematical to adequately model and/or 
control accurately, owing to its intrinsic time varying and non-linear dynamics. The process 
should be controlled such that the maximum biomass is produced in the shortest time 
using the minimum raw materials, such as substrate and oxygen. The cost of the various 
components of a growth medium can have a significant effect on the overall cost of 
fermentation processes since they can account for between 38% and 73% of total 
production costs. The organic carbon source is often the most expensive component. 
Ratledge  [1] has made a detailed analysis of annual price and availability of major carbon 
substrates. In fed-batch fermentations, the embedded exponential growth pattern requires 
a corresponding substrate supply. This substrate demand can pose a considerable 
problem for a non-optimised substrate feed profile. Any excess substrate is a waste of 
resources, while substrate lack is growth limiting factor. In theory the optimal feed profile is 
an exponential increase matching the demand from the increasing cell numbers. This type 
of profile can be difficult to achieve since many industrial fermentation processes do not 
have sophisticated feed pumps: instead they use pumps which deliver at a fixed rate for a 
set length of time (that is, quantized levels). It is possible to adapt the feed profile so that a 
high biomass yield is obtained whilst minimising the total substrate supplied. One 
approach to formulating a more optimised feed profile is to utilise Artificial Intelligence 
techniques such as Particle Swarm Optimisation (PSO) or Genetic Algorithms (GA). 
 

In the 1950s computer scientists studied evolutionary systems as optimisation tools, 
introducing the basics of evolutionary computing. Until the 1960s, the field of evolutionary 
systems was working in parallel with GA research. When they started to interact, a new 
field of evolutionary programming appeared by introducing new concepts of evolution, 
selection and mutation. Holland  [2] defined the concept of the GA as a metaphor of the 
Darwinian theory of evolution applied to biology. Implementation of a GA begins with a 
population of random chromosomes. The algorithm then evaluates these structures and 
allocates reproductive opportunities such that chromosomes which represent a better 
solution to the problem are given more chance to “reproduce”. In selecting the best 
candidates, new fitter offspring are produced and reinserted, and the less fit removed. Like 
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neural networks, GAs are based on a biological metaphor, however, instead of the 
biological brain, GAs view learning in terms of competition among a population of evolving, 
alternative concepts. A GA maintains a population of candidate problem solutions. Based 
on their performance, the fittest of these solutions not only survive, but, through an 
analogy with sexual reproduction, exchange information with other candidates to form new 
solutions. In using operators such as crossover and mutation the chromosomes exchange 
their characteristics. The suitability of a solution is typically defined with respect to the 
current population  [3]. GA techniques have a solid theoretical foundation  [3], based on the 
Schema Theorem  [2].  

 
The implicit rules followed by the members of fish schools and bird flocks, that allow 

them to undertake synchronized movement, without colliding, has been studied by several 
scientists  [4]. There is a general belief that social sharing of information among individuals 
of a population, may provide an evolutionary advantage, and there are numerous 
examples coming from nature to support this. This was the core idea behind the 
development of PSO. The PSO method is a member of the wide category of Swarm 
Intelligence methods  [5]. Kennedy originally proposed PSO as a simulation of social 
behaviour, and it was initially introduced as an optimisation method in 1995  [6]. PSO can 
be easily implemented and is computationally inexpensive since its memory and CPU 
speed requirements are low  [7]. Furthermore, it does not require gradient information of 
the objective function being considered, only its values. PSO has proved to be an efficient 
method for numerous general optimisation problems, and in some cases it does not suffer 
from the problems encountered by other Evolutionary Computation techniques  [6]. PSO 
has been successfully applied to a range of problems, from function optimisation to the 
training of neural networks. Although, while PSO typically moves quickly towards the best 
general area in the solution space for a problem, it often has difficulty in making the fine 
grain search required to find the absolute best point. 
 

GENETIC ALGORITHM OPERATION 
To illustrate the working process of genetic algorithm, the steps to realise a basic GA 

are listed: 
Step 1: Represent the problem variable domain as a chromosome of fixed length; choose 
the size of the chromosome population N, the crossover probability Pc and the mutation 
probability Pm. 
Step 2: Define a fitness function to measure the performance of an individual 
chromosome in the problem domain. The fitness function establishes the basis for 
selecting chromosomes that will be mated during reproduction. 
Step 3: Randomly generate an initial population of size N:  Nxxx ,...,, 21  
Step 4: Calculate the fitness of each individual chromosome: )(),...,(),( 21 Nxfxfxf  
Step 5: Select a pair of chromosomes for mating from the current population. Parent 
chromosomes are selected with a probability related to their fitness. High fit chromosomes 
have a higher probability of being selected for mating than less fit chromosomes. 
Step 6: Create a pair of offspring chromosomes by applying the genetic operators. 
Step 7: Place the created offspring chromosomes in the new population. 
Step 8: Repeat Step 5 until the new population size equals that of the initial population, N. 
Step 9: Replace the initial (parent) chromosome population with the new (offspring) 
population. 
Step 10: Go to Step 4, and repeat the process until the termination criterion is satisfied. 

 
 A GA is an iterative process. Each iteration is called a generation. A typical number 
of generations for a simple GA can range from 50 to over 500. Common practice is to 
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terminate a GA after a specified number of generations and then examine the best 
chromosomes. If no satisfactory solution is found, then the GA is restarted.  

 
 PARTICLE SWARM OPTIMISATION ALGORITHM OPERATION 

PSO optimises an objective function by undertaking a population-based search. The 
population consists of potential solutions, named particles, which are a metaphor of birds 
in flocks. These particles are randomly initialised and freely fly across the multi-
dimensional search space. During flight, each particle updates its own velocity and 
position based on the best experience of its own and the entire population. The updating 
policy drives the particle swarm to move toward the region with the higher objective 
function value, and eventually all particles will gather around the point with the highest 
objective value. The detailed operation of particle swarm optimisation is given below: 
Step 1: Initialisation. The velocity and position of all particles are randomly set to within 
pre-defined ranges.  
Step 2: Velocity Updating. At each iteration, the velocities of all particles are updated 
according to: 

)()( ,22,11 ibestiibestiii pgRcppRcvwv
������

−+−+=  (1) 
where ip

�  and iv
�  are the position and velocity of particle i, respectively; best,ip

�  and bestig ,
�  is 

the position with the ‘best’ objective value found so far by particle i and the entire 
population respectively; w is a parameter controlling the flying dynamics; R1 and R2 are 
random variables in the range [0, 1]; c1 and c2 are factors controlling the related weighting 
of corresponding terms. The inclusion of random variables endows the PSO with the 
ability of stochastic searching. The weighting factors, c1 and c2, compromise the inevitable 
trade-off between exploration and exploitation. After updating, iv

� should be checked and 
secured within a pre-specified range to avoid violent random walking. 
Step 3: Position Updating. Assuming a unit time interval between successive iterations, 
the positions of all particles are updated according to: 
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+=1  (2) 
After updating, ip

� should be checked and limited to the allowed range. 
Step 4: Memory updating. Update best,ip

�  and bestig ,
�  when condition is met. 
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where )(xf
� is the objective function subject to maximization. 

Step 5: Termination Checking. The algorithm repeats Steps 2 to 4 until certain 
termination conditions are met, such as a pre-defined number of iterations or a failure to 
make progress for a certain number of iterations. Once terminated, the algorithm reports 
the values of bestg

� and )( bestgf
� as its solution. 

 
APPLICATION AND RESULTS 

 Genetic Algorithm 
 Extensive simulation tests have been conducted on the GA and PSO to test the 
effectiveness of the mechanisms, using simulations of a model of a fed-batch fermentation 
of S. cerevisiae (Bakers’ Yeast), where the model is based on stoichiometric constants and 
kinetic equations  [8]. For all the tests, the feed rate was defined to be in the range 0-200 
mg/h, with each time period lasting 15 minutes. Table 1 illustrates the objective functions 
utilised for the simulation tests.  The tests performed held most elements of the GA 
constant while one element was changed: for example, four different minimisation 
functions were used while maintaining a population of 200 individuals with a crossover 
rate of 0.8 and a mutation rate of 0.0225.  

- IIIB.8-3 -



International Conference on Computer Systems and Technologies - CompSysTech’2006 

 
              

 Table 1 Objective Functions Utilised 

1.  ),( TheoryActual XXf  
2.  ),( ActualS XTf  
3.  )(Sf  
4.  ),,( TheoryActual XXSf  
5.  ),,( TheoryActualS XXTf  

 
 Since GAs are stochastic, their performance usually varies from generation to 
generation. The first objective function considers the difference between the actual cell 
concentration (XA) and theoretical maximum cell concentration (XT). The developed feed 
profile is somewhat high for the whole fermentation period (Figure 1), with a consequential 
excess substrate in the broth. The cell concentration has an ideal increase for the 
complete fermentation period, achieving the theoretical maximum value. The second 
objective function considers the ratio of the Total Substrate Feed (TS) and XA at the end of 
the fermentation period. In this instance, the feed profile has a lower rate than the first 
test. While there are periods of excess substrate in the broth, basically the substrate is 
kept to a minimum, however the final cell concentration is much reduced versus the 
theoretical maximum (Figure 2). The third objective function considers only the Substrate 
concentration over the fermentation period. The general level of the feed profile is higher 
than that for test 2 and does exhibit a general increase over time. The cell concentration 
increases over the fermentation period, although its final value is only half that the 
theoretical maximum (Figure 3). The final objective function considers the ratio of the 
substrate concentration and the difference between XA and XT. The feed profile is lower 
than that for tests 1 and 3. Besides a couple of points when there is excessive substrate, 
generally the substrate is at a minimal. The final cell concentration is less than that for test 
3 (Figure 4).  

 
 Particle Swarm Optimisation 
 The tests performed held the elements of the PSO constant while the minimisation 
function was altered: the parameters used were a swarm of 200 individuals, using two 
neighbour observations, and a velocity weight of 0.95 at the start of PSO iterations 
reducing to 0.4 for the final iteration. The first objective function (difference between XA 
and XT). The profile developed is fairly high throughout the fermentation (Figure 5), 
resulting in a significant amount of excess substrate in the broth. The cell concentration 
has a perfect increase for the complete fermentation period. The final cell concentration 
achieves the maximum theoretical value. The second objective function (using TS and final 
XA  value). In this case, the developed feed profile has a generally low rate with significant 
time with an almost zero feed rate. This results in a very low level of excess substrate in 
the broth. The cell concentration throughout the fermentation is significantly below the 
theoretical maximum (Figure 6) achieving only a 50% level. Overall, this is a poor profile 
for the fermentation although the PSO has followed the objective function requirements. 
The third objective function (considering S over the fermentation). The developed feed 
profile has a steady increase; with a corresponding increase in cell concentration. The 
final cell concentration is high although not quite as high as the theoretical maximum 
(Figure 7). In this case the PSO has performed an admirable task. The fourth objective 
function (ratio of S and difference between XA and XT). The feed profile developed exhibits 
a general increase throughout the fermentation (Figure 8). There is a resultant minimal 
amount of excess substrate in the broth, and a steady increase in cells although below the 
theoretical, finally reaching around 70% of the maximum.  
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 Comparison 
 For each methodology applied to each test, it is clear that the required objective 
function has been achieved. However the results seem to indicate that the feed profiles 
formed by the Genetic Algorithm approach are superior to those produced by the Particle 
Swarm Optimisation: that is that generally the final cell concentration is higher and the 
excess substrate level is lower which is the fundamental requirement of the fermentation 
system.  

 
 DISCUSSION 
 The strength of GAs is in the parallel nature of their search. A GA implements a 
powerful form of hill climbing that preserves multiple solutions, eradicates unpromising 
solutions, and provides reasonable solutions. Through genetic operators, even weak 
solutions may continue to be part of the makeup of future candidate solutions. The genetic 
operators used are central to the success of the search. All GAs require some form of 
recombination, as this allows the creation of new solutions that have, by virtue of their 
parent’s success, a higher probability of exhibiting a good performance. In practice, 
crossover is the principal genetic operator, whereas mutation is used much less 
frequently. Crossover attempts to preserve the beneficial aspects of candidate solutions 
and to eliminate undesirable components, while the random nature of mutation is probably 
more likely to degrade a strong candidate solution than to improve it. Another source of 
the algorithm’s power is the implicit parallelism inherent in the evolutionary metaphor. By 
restricting the reproduction of weak candidates, GAs eliminate not only that solution but 
also all of its descendants. This tends to make the algorithm likely to converge towards 
high quality solutions within a few generations. 

 
 Particle Swarm Optimisation shares many similarities with evolutionary computation 
(EC) techniques in general and GAs in particular. All three techniques begin with a group 
of a randomly generated population, all utilise a fitness value to evaluate the population. 
They all update the population and search for the optimum with random techniques. A 
large inertia weight facilitates global exploration (search in new areas), while a small one 
tends to assist local exploration. The main difference between the PSO approach 
compared to EC and GA, is that PSO does not have genetic operators such as crossover 
and mutation. Particles update themselves with the internal velocity, they also have a 
memory that is important to the algorithm.  Compared with EC algorithms (such as 
evolutionary programming, evolutionary strategy and genetic programming), the 
information sharing mechanism in PSO is significantly different. In EC approaches, 
chromosomes share information with each other, thus the whole population moves like 
one group towards an optimal area. In PSO, only the ‘best’ particle gives out the 
information to others. It is a one-way information sharing mechanism, the evolution only 
looks for the best solution. Compared with ECs, all the particles tend to converge to the 
best solution quickly even in the local version in most cases. Compared to GAs, the 
advantages of PSO are that PSO is easy to implement and there are few parameters to 
adjust. 
 
 CONCLUSIONS 
 Techniques such as PSO and Genetic Algorithms are inspired by nature, and have 
proved themselves to be effective solutions to optimization problems. However, these 
techniques are not a panacea, despite their apparent robustness. There are control 
parameters involved in these meta-heuristics, and appropriate setting of these parameters 
is a key point for success. In general, some form of trial-and-error tuning is necessary for 
each particular instance of optimization problem. Additionally, any meta-heuristic should 
not be thought of in isolation: the possibility of utilising hybrid approaches should be 

- IIIB.8-5 -



International Conference on Computer Systems and Technologies - CompSysTech’2006 

 
              

considered. Additionally for both approaches the major issue in implementation lies in the 
selection of an appropriate objective function. 
 
 Like many AI approaches, both PSO and GA are computationally intensive, and the 
tuning process tends to be ad hoc.  The next stage of research would involve 
implementing the methodology on a real-time process, although the work conducted so far 
suggests that the procedure will operate successfully. In conclusion, the work presented 
illustrates that Genetic Algorithms and Particle Swarm Optimization can be used for 
generating feed profiles that are optimised for a given objective function. The main 
problem in implementation lies in the selection of an appropriate objective function, then 
once the control parameters have been tuned both GA and PSO can produce a result. 
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Figure 1 Results for objective function 1 
(GA). 
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Figure 2 Results for objective function 2 
(GA). 
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Figure 3 Results for objective function 3 
(GA). 

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

C
el

l C
on

c.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

S
ub

st
ra

te

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

Fe
ed

 R
at

e

Time (hrs)  
Figure 4 Results for objective function 4 
(GA). 
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Figure 5 Results for objective function 1 
(PSO). 
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Figure 6 Results for objective function 2 
(PSO). 
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Figure 7 Results for objective function 3 
(PSO). 
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Figure 8 Results for objective function 4 
(PSO).
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