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Abstract: In the paper is applied wavelet-based Hurst parameter estimator for analysis of simulated 

network traffic, based on the fractional Gaussian noise. It was made a comparative analysis between the 
results obtained of wavelet-based estimator and wide using estimators as R/S statistic, variance-time plot 
and periodogram. The Hurst parameter obtained of wavelet-based estimator has the least value of relative 
inaccuracy compared to the other estimators. The simulated network traffic has a high degree of accuracy 
and this generator can be used in practical computer simulation studies. 
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Introduction 
The high-speed network traffic investigations performed recently demonstrated that 

this is a Long-Range Dependence (LRD) process [2], [9]. The LRD process exhibits similar 
behavior observation on various time scales. This process is characterized by Hurst 
parameter (H) which measures the degree of LRD. The value of H is between 0.5 and 1. 
The correct and efficient estimation of H is important for the statistical analysis of the 
process. There are several Hurst parameter estimators, such as R/S plot, variance-time 
plot, periodogram and wavelet-based [5]. The wavelet transform with their natural scale 
invariance and low computational cost is suitable for analyzing of LRD process [3]. In this 
paper is used wavelet-based H estimator for analysis of simulated network traffic, based 
on the fractional Gaussian noise (FGN) process [4], [7]. 

 
1. Wavelet-based estimator of the Hurst parameter  
1.1. Wavelet transform  
The wavelet transform is mathematical tool for representing signals as sum of “small 

waves”.  It is a better substitute of the Fourier transform. The Fourier transform is used to 
transform a signal from the time domain to the frequency domain. The signal is 
transformed into a sum of sinusoid of different frequencies. The Fourier transform cannot 
present information about the time. The wavelet transform is capable of providing the time 
and frequency information of a signal simultaneously. This transform is analyzed non-
stationary signals with sudden peaks, without losing information on low or high frequency 
and time domain [2]. 

The basic algorithm of the wavelet transform is shown in Figure 1. This simple filter 
algorithm performs a one-dimensional one-scale wavelet transform on any one-
dimensional input sequence. It uses the pyramidal algorithm shown in Figure 2. This 
algorithm is based on two filters (G0 and G1) that are derived from the scaling function and 
mother wavelet chosen for the transformation. G1 is high-pass wavelet filter and G0 is the 
complementary low-pass wavelet filter. The outputs are the low-pass residue for the G0 
filter branch, represented by Approx, and the high-pass sub-band for the G1, branch, 
represented by Detail [1]. 
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Figure 1. Basic algorithm for the wavelet transform 
 

The computational cost of the pyramidal algorithm is O(n),  which is lower than the 
cost of the FFT algorithm O(nlogn) [6]. 
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Figure 2. Recursive pyramidal algorithm for the multi-scale wavelet transform. 

 
1.2. Multi-Resolution Analysis 
The wavelet transform is based on the concept of Multi-Resolution Analysis (MRA). 

MRA considers the information at different resolutions or scales. Fourier transforms are 
constant resolution based, because they involve single forward/reverse transforms that 
convert data to/from a different representation.  

The MRA consists of collection of nested subspaces {Vi, i∈Z}, satisfying the following 
properties [1]: 

1. ii VV UI   },0{=  is dense in Hilbert space L2(R); 

2. 1−⊂ ii VV ; 

3. 0)2()( VtxVtx i
i ∈↔∈ ; 

4. The function )(0 tφ  in vector V0 is called the scaling function and the 

collection { }),(0 Zjjt ∈−φ is an orthonormal basis for V0. 
The input signal is represented in terms of dilated versions of a prototype of high-

pass wavelet function ( ji,ψ ) and shifted version of a low-pass scaling function ( ji,φ ), based 

on the scaling function ( 0φ ) and the mother wavelet basis function ( 0ψ ).  The relationship 
between these function are: 

  Zjjtt ii
ji ∈−= −−     ),2(2)( 0

2/
, φφ                                       (1) 

Z jjtt jj
ji ∈−= −−   ),2(2)( 0

2/
, ψψ                                      (2) 

The approximation information of sequence x is given by: 
)(),()( , tjiatapprox

j
jixi ∑= φ                                             (3) 

Where the coefficient ),( jiax is given by calculating the inner product of x: 

>=< jix xjia ,,),( φ                                                            (4) 

The detail information (detaili) of sequence x is given by: 
               )(),(det , tjid(t)ail ji

j
xi ψ∑=                                               (5) 

Where the coefficient ),( jid x is given by calculating the inner product of x: 

>=< jix xjid ,,),( ψ                                                           (6) 

MRA represent the information about sequence x as a collection of details and a low-
resolution approximation: 
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The function 0φ  produces an approximation of signal x and it must be a low-pass 

filter. The mother wavelet function 0ψ must be high-pass filter, and it performs a differential 
operation on the input signal to produce the detail version. 

 
1.3. Wavelet-based Hurst parameter estimator 
The wavelet-based Hurst parameter estimator is based on a spectral estimator 

obtained by performing a time average of the wavelet detail coefficients 
2

),( jid x at a given 

scale [8]: 
2

),(
1
∑=

j
x

i
x jid

n
S                                                          (8) 

Where ni is the number of wavelet coefficients at scale i, i.e., ni=2-in, where n is 
number of data points.  

The estimator first performs Discrete Wavelet Transform (DWT) on the input signal, 
employing wavelets from the Daubechies family. In the paper is used wavelet 
Daubechies4, which has 4 vanishing moments. After computing the DWT, the estimator 
calculates the estimates of log2E[d(i,j)]2 and variance of these estimates and performs a 
linear regression. The estimator estimates the slope β by performing linear regression of 
log2(S) for range [i1,i2] . The H is calculated by formula: H=0.5(1+ β), 0<β<1. The linear 
relationship between log2(S) and scale level i over a range [i1,i2] indicates the presence of 
a LRD behavior. 

The estimator is based on the following idealizations: 
1. The process X(t) and its wavelet coefficients are Gaussian; 
2. For fixed i, d(i,j) are independent, identically distributed variables; 
3. The processes d(i1,j) and d(i2,j) for i1≠i2 are independent. 

 
 2. Simulation results 
In this paper is used the wavelet-based Hurst parameter estimator for analyzing the 

accuracy of simulated network traffic, based on fractional Gaussian noise process. The 
simulations are implemented in C++ language. For each of Hurst parameter = 0.6, 07, 08 
and 0.9 are generated 100 sample sequences of 215 (32768) numbers, starting from 
different random seed.  

Table 1 shows the relative inaccuracy of mean values of Hurst parameter for different 
sample size of self-similar FGN process. The relative inaccuracy ∆H is calculated using 

the formula: ∆H= %100*
ˆ

H

HH −
, where H is the input value and Ĥ  is an empirical mean 

value. The relative inaccuracy decreases with the increase in sample size and it is minimal 
at sample size 215. This sequence length is chosen for simulating network traffic.  

 
Table 1 Relative inaccuracy of mean values of ∆H (%) for different sample size  

Relative inaccuracy ∆H (%) Sample 
size 

 
H=0.6 H=0.7 H=0.8 H=0.9 

212 (4096) 0.2844 0.4605 0.1851 -1.2552 
213 (8192) 0.2807 0.4263 0.0771 -1.2523 

 214 (16384) 0.2009 0.4190 0.0661 -1.3128 
 215 (32768) 0.1770 0.4062 0.0268 -1.0639 

 
Table 2 shows the relative inaccuracy when the mean values of Ĥ are obtained for 

100 self-similar sequences. 
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Table 3 shows variances of Ĥ values for different scales and values of H. The 
variances gradually decrease as the values of i1 increase. The results shows that the 
variance of Ĥ  is the least biased at scales i1= 8 and 9. Therefore, the scale i1=9 is chosen 
for analyzing of simulated network traffic.  

 
Table 2 Relative inaccuracy of mean values of ∆H (%) for different scales 

Relative inaccuracy ∆H (%) Scale 
 (i1,i2) H=0.6 H=0.7 H=0.8 H=0.9 
(5,12) -1.7936 -3.0274 -4.7117 -7.0652 
(6,12) -1.1259 -2.0074 -3.4078 -5.5752 
(7,12) -0.7429 -1.2483 -2.3118 -4.2275 
(8,12) -0.4802 -0.5752 -1.2456 -2.8429 
(9,12) +0.1770 +0.4560 +0.5751 -1.0639 

 
Table 3 Variances of Ĥ  values for different scales and H values 

Estimated variances Scale 
 (j1,j2) H=0.6 H=0.7 H=0.8 H=0.9 
(5,12) 0.0034 0.0098 0.0188 0.0290 
(6,12) 0.0029 0.0085 0.0164 0.0254 
(7,12) 0.0023 0.0069 0.0135 0.0210 
(8,12) 0.0009 0.0040 0.0087 0.0145 
(9,12) 0.0007 0.0028 0.0062 0.0103 

 
Figure 3 shows the linear relationship between log2(S) and scale i over a range from 

5 to 12. This relationship indicates the presence of long-range dependence behavior of 
simulated network traffic. The estimator Ĥ  for the Hurst parameter is determined by 
performing a linear regression of log2(S) on scale level i in the range from 5 to 12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The regression curves for wavelet-based H estimates of self-similar FGN 
process, with H=0.6, 0.7, 0.8 and 0.9, for scale (j1,j2)=(5,12). 

 
Figure 4 shows relative inaccuracy (∆H) of mean values of the estimated H using 

different Hurst parameter estimation techniques: periodogram, variance-time plot, R/S 
statistics and wavelet-based estimator for different values of H=0.6, 0.7, 0.8 and 0.9 of the 
simulated network traffic.  

Basic on the results could be made the following conclusions: 

H=0.6 [0.589] y =-0.179x-0.863

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

4 5 6 7 8 9 10 11 12 13
Scale j

Lo
g2

(S
)

H=0.7 [0.679] y =-0.359x+2.155

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

4 5 6 7 8 9 10 11 12 13
Scale j

Lo
g2

(S
)

H=0.8 [0.78] y =-0.523x+4.936

-2
-1
0
1
2
3
4
5

4 5 6 7 8 9 10 11 12 13
Scale j

Lo
g2

(S
)

H=0.9 [0.846]  y=--0.673x+7,197

-2
-1
0
1
2
3
4
5

4 5 6 7 8 9 10 11 12 13
Scale j

Lo
g2

(S
)

- IIIB.6-4 -



International Conference on Computer Systems and Technologies - CompSysTech’ 2006 
 
 

 
               

 

• The periodogramm plots have decreasing slopes when H increase. 
The negative slopes of all plots for H are evidence of self-similarity. The estimated 
Hurst parameters have positively biased Ĥ values. For 0.6≤H<0.65 the 
confidence intervals of estimated Hurst parameter contain the approximately 
exact values. 

• The variance-time estimator produces negatively Ĥ values when H 
increase with H∆ <5%. 

 

                         

Performance of Hurst parameter estimators

-6
-4
-2
0

2
4
6

0.6 0.7 0.8 0.9
Actual Hurst value

R
el

at
iv

e 
in

ac
cu

ra
cy

Wavelet-based Variance-time plot
R/S statistic Periodogram

 
Figure 4. Bias performance of Hurst parameter estimators for self-similar fractal 

Gaussian noise process 
 

• The R/S plot produces positively biases for H<0.75 and negatively 
biases for H>0.75 with H∆ <4.12%. 

• The results for the wavelet-based estimator show that for all input H 
values, confidence intervals are within the assumed theoretical values. For H=0.6 
the wavelet-based estimator is the most accurate. For 0.6≤H<0.9 the relative 
inaccuracies are less than 0.58%. 

 
Conclusions 

The correct and efficient estimation of the Hurst parameter of high-speed network 
traffic is important for traffic analysis. The application of wavelet-based Hurst parameter 
estimator is implemented for analysis of simulated network traffic, based on the fractional 
Gaussian noise. Comparative analysis is made between the results obtained of wavelet-
based estimator and wide using estimators as R/S statistic, variance-time plot and 
periodogramm. The conclusions based on the results are: 

1. The Hurst parameter obtained of wavelet-based estimator has the 
least value of relative inaccuracy compared to the other estimators. For H=0.6 the 
wavelet-based estimator is the most accurate. For 0.6 ≤ H < 0.9 the relative 
inaccuracies are less than 0.58%. 

2. The guarantees to simulate network traffic, based on the fractional 
Gaussian noise are with high degree of accuracy. This generator can be used in 
practical computer simulation studies, when long self-similar sequences of 
numbers are needed. 
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