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Abstract: Artefacts are noises introduced to the electroencephalogram’s (EEG) signal by not central 

nervous system (CNS) sources of electric fields inside and outside subject’s body. The artefacts impede the 
analysis of the signal and should be handled properly. The most common and characteristic kind of artefacts 
is the electrooculographic (EOG) ones, especially subject’s eye-blinking artefacts. In this paper an analysis 
of the power spectrum of eye-blinking artefacts is described with a connection of using the EEG for brain-
computer interface (BCI), working with α- and µ-rhythm (range 8-13 Hz) brain potentials. 
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INTRODUCTION 
One of the most important and distinguishing aspects of humans is the ability to 

communicate. Communication between people is richer and more complex than any other 
form of communication and plays a vital role in any relationship. Verbal and written 
messages are typically sent using the mouth and throat or the hands and are received by 
the ears or eyes, all of which are mediated by extensive processing mechanisms in the 
brain. While communication between humans has been extensively developed and 
studied, communication between people and devices – especially sophisticated electronic 
systems – is relatively embryonic. As brain science and computer technologies mature, it 
is inevitable that the ultimate intuitive interface will involve direct communication between 
the user’s brain and a computer – brain computer interface (BCI).  

Almost all of the BCIs studies are based on EEG, recorded from the scalp as a non-
invasive and easy to use method, which does not require heavy and complicated 
equipment [10]. BCI consists of input part, processing part, output part and a protocol, 
which controls the process [9]. Until the user is performing a mental task, his/her mental 
effort changes the EEG potentials. Those changes are later recognised by a classificator 
and the result forms the signal for the output device’s control.  

Subjects taking a part in EEG experiments blink, move and glance about, as is 
expected of anyone asked to sit in a chair for a long time and engage in a repetitive task. 
Unfortunately, these movements may introduce periods of electrical noise - not CNS 
artefacts that may be difficult to discriminate from neural activity. Artefacts can dramatically 
alter the signal recorded at all scalp areas, especially those closest to the source of the 
noise [2].  

Electromyography (EMG) of the face muscles could dominate in the frequency range 
of β- and µ-rhythms [6], measured in frontal placed electrodes, the eye-blinks could impact 
frequency range of θ- even µ-rhythm in frontal and central scalp areas [3, 7]. Like the user 
could control BCI out by rising eyebrows or by blink, the mentioned activity could disguise 
actual EEG control signal. These artefacts could bring to false results and beliefs during 
the study of EEG based BCI. Later studies [4], pretending neuroprosthesis control by EEG, 
recorded from frontal cortex, show this risk. Next study [5] proves that the frontal EMG has 
a big influence over the control. 

First step of developing a BCI is finding the EEG pattern of some mental tasks and 
train the classificator. Important part of this work is to select a proper part of the EEG and 
clear it (as much as possible) from artefacts. Determining what is considered artefact, how 
much artefact is excessive, and removing artefacts from real data is a necessary stage in 
EEG (pre) processing, especially when prepare the data for training the BCIs cllassificator.  

 
DATA PROCESSING 
To find the eye-blinking artefacts influence on the EEG data in the range 8-13 Hz a 

comparison between averaged power spectrum of segments, containing blinks and 
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segments laying just before is made.  

A database recorded by Bsc. Mark Wessel, and Eng. Pavel Hrubes, PhD, during 
experiments in 2005 in Delft University of Technology, Department of MMI is used. The 
electrodes positioning corresponds to the international “10-20 system” [6]. To decrease the 
electrode-skin resistance an electrode cap with hollow electrodes filled by an electro 
technical gel [11] is used. 

 

 
Fig. 1. EEG during performance of four different tasks with eye-blinks at every task’s end 

(vertical line), view in TruScanExplorer [11]. 
 

The study is made on data, recorded during various mental tasks’ performance in the 
frame of one session for the whole existing database, containing 40 sessions. According to 
the experiment’s schedule for tasks 30, 32, 34, 36 – named respectively Visual 
presentation of “Yellow triangle”, “Green dot”, “Red cross” and “Blue lines” first 5 seconds 
from every task are “clean” data, namely data that do not contain blinks, the following 3 
seconds contain a planned blink. Later the following task starts. The tasks alternate with 
each other in pseudorandom order, fig. 1. Every task repeats 5 times that is (4 tasks x 5 
times) = 20 segments per one session. Averaging blinks, occurring during various mental 
tasks’ performance is not a problem when the comparison goes with segments without 
blinks during these same tasks. From other side, according to a preliminary study, these 
four tasks have almost similar patterns. For the present study the electrode C3 is chosen, 
because it is placed above the central part of the brain (not too close to the blinks’ 
artefacts sources).  

Every blink is selected in three-seconds segment (768 samples of data), including 
EEG before and after the visible maximum of the blink in time domain – fig. 2. In time 
domain every blink has its own unique form, but the aim of the study is the power 
spectrum comparison. In all channels the amplitude of the blink is almost equal. In Fp1 
and Fp2 the amplitude of EEG without blinks is lower (1) in comparison to other electrodes 
(not shown on a picture), which makes them usable for automatic blinks detection by 
simply controlling EEG amplitude in time domain. If the threshold is properly set, the 
probability of errors tends to zero. 

noBlinkblink UU ).53( −=         (1) 
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Fig. 2. EEG segments with blinks in channel C3 during task 30 (MATLAB). 

 
For every three-second segment which contains a blink the Fourier transform and the 

power spectrum are calculated [1]. The results for frequencies up to 30 Hz are in  

matrix. Every row  (  - ) contains one segment’s power spectrum. 
BlinkPWR

1,jpwr 91,jpwr
 

 
Fig. 3. Averaged power spectrum in C3 (MATLAB). 

 
Averaging the power spectrum according to (2) is the array  which contains the AvP

averaged power spectrum for all segments with blinks. Averaging 20 segments results in 
20  lower level of the white noise [8], which is a result of neighbor neurons activity [6]. 
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The same is done on other 20 three-seconds segments just preceding the blinks in every 
task.  
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The results for border frequencies are in table 1.  
 
Table 1. 
Frequency  
[Hz] 

3 8 13 15 20 25 

Position on 
the plot, fig. 3 

10 25 40 46 61 76 

Blink power 101 340 34 935 3 446.8 2 194.8 487.3 327.85 
No Blink 
power 

1 016.5 8 490.9 400.48 415 140.02 74.726 

 
The graphs of averaged power for segments with and without blinks are on fig. 3. In 

fact it is one graph in three scales.  
From first graph one could compare the proportion between the powers. The low 

frequencies power of the data without blinks that could be seen in this small scale is only 
DC offset’s power. According to table 1, below 3 Hz the power of containing a blink 
segment is more than 100 times higher. This regularity could be used for automatic blink 
detection. 

On second graph one could see that the power of the blink is concentrated up to 
around 3 Hz (x-tick mark 10*).  

The scale of third graph is chosen to see the power correlation in the range 8-13 Hz 
(between x-marks 25-40*). The conclusion is that the blinks’ power in the range 8-13 Hz is 
much higher (see table 1) than the power in segments without blinks and could 
significantly contaminate the EEG.  

Notice*: X-tick mark 1 is reserved for the DC-offset’s power. As the Fourier transform 
of 3 seconds segment is done, the frequency resolution is 3 times higher, that sends 3 Hz 
to x-tick 10 (1+3x3) and respectively 13 Hz to x-tick 40 (1+13x3). 

 
CONCLUSIONS AND FUTURE WORK 
Eye-blinks power spectrum is concentrated in the range 0.5 to 3 Hz. There the power 

of blinks is much more (more than 100 times) higher than blinks-free EEG data. This could 
be used for automatic eye-blink detection. 

The contamination of the EEG signal, caused by the blinks could be seen even 
above 13 Hz. In the range 8-13 Hz in most of the channels the power introduced by the 
blinks is times higher than the power of the “clean” EEG. This correlation could bring errors 
during the classification, considering the fact that the EEG patterns power is smaller. 
Therefore, in BCIs working with patterns in the range 8-13 Hz the eye-blinks artefacts 
should be eliminated.  

This study will be used for preparing data for final mental tasks’ selection. After 
choosing tasks with clear and expressive patterns from the existing database (and 
eliminating the others) the input vectors for the classificator of a BCI will be formed. 
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