
International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 
             

 

 
Solution of Optimization Continuous Centre  

Location Problems as Web Service  
 

Elena Ivanova, Todor Stoilov 
 

Abstract: Version of the facility location problem is considered: given a set of positions, the goal is to 
find one or more centre points that minimize the maximum distance to a given set of points. Such kinds of 
problems arise in a lot of practical applications in different fields of study: management, economy, production 
planning, etc. The paper particularly addresses developments, related to the design of Web service for 
solving optimization continuous location problems. 
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INTRODUCTION 
The location problem of facilities is considered in the following form: given a set of 

client positions, the goal is to find one or more centre points that minimize the maximum 
distance to a given set of points. Facility location problems arise in a wide set of practical 
applications in different fields of study: management, economy, production planning and 
many others [5]. In general there are two types of location problems: continuous, where 
the decision variables can assume real values, and discrete, where the decision variables 
can take discrete values, such as the integers. The paper is concerned with continuous 
location problems. 

Web services provide standard means of interoperating between different software 
applications, running on a variety of platforms and/or frameworks. The Web service as a 
programmable application logic is accessible using standard Internet protocols. Like 
components, Web services [6] represent functionalities that can be easily reused without 
knowing how the service is implemented.  

The paper particularly addresses developments, related to the design of Web service 
for solving optimization continuous location problems. 
 

THE CONTINUOUS LOCATION PROBLEM 
Since the problem of finding multiple centres can be transformed into a single centre 

problem with the cost of increasing the dimension of the positions, the paper deals with the 
single continuous centre location problem. It is stated as follows. 

There is a set M of m positions (locations) embedded in the Rn space. The problem is 
to find a centre point, minimizing the maximum distance to a given set of points. 

Let M = {y1, y2, …, ym}, yi є Rn, i = 1, 2, …, m, is the set of locations. The objective 
function for the facility allocation problem is as following ( .  is the Euclidean norm): 

 
(1) F(x) = xy

My
−

∈
max  

 
Thus the problem of finding a central point can be formally written as: 
 
(2) )(min xF

nRx∈
. 

 
On the fig.1 is represented the graphics of the objective function F(x), defined by (1), 

for x=(x1,x2) є R2, and the set M, consisting of four points{(0,0),(1,0),(0,1),(1,1)}.  
It is not difficult to prove that the function F(x), defined by (1), is convex. Since F(x) is 

convex and it is defined over the open set Rn, the function F(x) from (1), is continuous [7]. 
It can be shown that the optimization problem (2) has unique solution.  
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Fig.1. the function F(x) 

 
Although the objective function F(x) from (1) is continuous, it is not differentiable. For 

that reason the methods of non-linear and nondifferentiable optimization are used for 
solving the problem (2). 

Subgradient Method 
This is the simplest and probably the most used method for nondifferentiable convex 

optimization. It is quite similar to the classical Steepest Descent method [1, 2, 3]. The main 
difference between these two methods consists in replacing gradients at Steepest Descent 
method with subgradients at Subgradient method. The Subgradient algorithm is 
represented on fig. 2. Hereafter the notation ∂F(x) concerns the subdifferential of the 
function F at x, so “s є ∂F(x)” means that s is a subgradient of F at x. 

 

 
 

Fig.2. Subgradient algorithm 

x0, ε > 0, k = 0 

Compute  
F(xk) and sk є ∂F(xk) 

Define a stepsize θk > 0 

xk+1 = xk- k

kk

s
sθ

 

k = k + 1 

||sk|| < ε end 
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The choice of the step sizes {θk} is crucial for the performance of this algorithm. There 

are appropriate choices which guarantee convergence of the numerical calculations. The 
details can be seen in [1, 2]. 

Although the Subgradient method is very simple and quite easy to implement, it has 
several disadvantages. First of all, the stopping criterion in step 3 may never be reached, 
because the method works with subgradient, which is not guaranteed to be a descent 
direction as the gradient is in the classical Steepest Descent method. Secondly, the 
method ignores any past information about the trial approximations of the solution. For that 
reason a lot of iterations can be performed before the evaluations attempt the necessary 
accuracy. 

Cutting plane method 
In order to avoid such kind of problems, Cutting plane method was utilized to solve 

the optimization problem (2). There are available several cutting plane algorithms [4, 5]. 
The differences between these algorithms are mainly in way of choosing the next trial 
point. For solving the continuous location problem Kelley-Cheney-Goldstein’s [5] method 
was used. 

 

 

 
Fig.3. Cutting plane algorithm 

 
The information from the previous iterations can be used to build descent directions 

and a linear model of the objective function. Consider the bundle of information: 
 
Β = {xk, F (xk), sk є ∂F (xk)}, k = 1, 2, …, L, 

x1 є C, ε > 0, k = 1, −∞≡
∧

0F  

Compute  
F(xk) and sk є ∂F(xk) 

⎭
⎬
⎫

⎩
⎨
⎧ 〉−〈+=

∧

−

∧
kk

kk xxsxFxFxF k ,)(),(max)( 1  

xk+1 є )(minarg xF k
Cx

∧

∈
 

δk := F(xk) - )(1
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end δk < ε 

k = k + 1 
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the following piecewise-linear approximation of F can be derived [3]: 

(3) 〉−〈+=
=

∧
kk

Lk
L xxsxFxF k ,)(max)(

..1
, 

where 〉〈 kk xs ,  is a scalar product of the vectors sk and xk. The sequence of functions LF
∧

, 

defined by (3), is called cutting-plane model of the function F. It is clear that )(xF L

∧

 <  

)(1 xF L+

∧

for all x є Rn . As sk is a subgradient of F(x) at xk, we have F(x) ≥ 〉−〈+ kk xxsxF k ,)(  

for all x є Rn. Having in mind this and the construction of LF
∧

, we have that )(xF L

∧

 <  F(x) 
for all x є Rn. The cutting plane model can be represented by linear constraints, so 
optimizing the model reduces to a LP. A local LP is solved each iteration. In order for the 
method to be well-defined, a compact C has to be specified (because a local LP is 
available). The Cutting plane algorithm is represented on fig. 3. 
 

IMPLEMENTING THE CUTTING PLANE ALGORITHM 
The design of the optimization program follows the approach, described in [1]. The 

components of the program are of the two main categories: (U) – user and (A) – algorithm. 
(U) – user: these parts of the program characterize the concrete problem which is 

about to be solved. They depend on the user who poses the problem and wants to find the 
solution. This part consists of two subcomponents. The first (U0) refers to the choice of the 
initial point x1 and the tolerance ε. The second (U1) refers to the properties of the objective 
function. In the curent case the number and the coordinates of the position yi from the set 
M are configured here. 

(A) – algorithm: the second major category includes the properties of the optimization 
algorithm itself – the set of rules/steps for building the iterative sequence { xk }.  

The formal architecture of the optimization program is depicted on fig.4. 

 
Fig.4 Architecture of the optimization program 

 
The software implementation consists of several programm modules. The module 

CVector is common for all the other components and implements multidimensional vector. 
The next auxiliary module is Bundle and represents the set Β = {xk, F (xk), sk є ∂F (xk)}, k = 
1, 2, …, L. CPAlgorithm performs the steps of the Cutting Plane method. The main solver 
consists of several parts: Initialization, Call Algorithm and Display the results. The Call 
Algorithm component invokes CPAlgorithm which acts together with module Oracle. 
Oracle evaluates the properties of the objective function. The configuration of these 
modules is shown on fig.5. The solver is implemented in Visual C++. 
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Fig.5 The scheme for Cutting plane implementation 
 

DESIGN AND IMPLEMENTATION OF WEB SERVICE INTERFACE  
The optimization program, described above, was equipped with a suitable interface, 

so that it can be discovered and invoked through the network by different client 
applications. Thus the optimization solver was developed as a service. The architecture of 
the whole application can be represented with the two layers model from fig.6. The 
external layer is the communication one, which receives and sends back massages, and 
the internal is the executive layer, where the core service operation is performed. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.6. Two layers model of a service 

SERVICE 

Communication layer

Executive Layer
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For implementation of communication layer, SOAP protocol was used, applied in the 

Web Services protocol stack [6]. Web services provide standard means of interoperability 
between different software applications, running on a variety of platforms and/or 
frameworks. The Web service as a programmable application logic is accessible using 
standard Internet protocols. Like components, Web services represent functionalities that 
can be easily reused without knowing how the service is implemented. Particularly SOAP 
stands for Simple Object Access Protocol and it is a lightweight, XML-based messaging 
protocol that contains an envelope, header, and body, designed to exchange information 
in a decentralized, distributed environment [6]. The construction of the communication 
layer of the discussed service is shown on fig. 7. 

 
 
 
 
 
 
 
 
 
 

Fig.7. Communication Layer: SOAP Client/Server 
 

 
CONCLUDING REMARKS 
Continuous location optimization problem has been described. Two nondifferentiable 

optimization methods, Subgradient and Cutting plane, were implemented for the solution 
of the problem. Due to disadvantages of the Subgradient method, the Cutting plane 
algorithm was chosen for the core service implementation. The optimization program was 
written on C and was developed as a Web Service. The Web service is PHP based and 
the communication functionalities support the SOAP standard.  
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