
International Conference on Computer Systems and Technologies - CompSysTech’06

k1 k4 k7

k8

k9 k6 k3

k2 k5

Fig.1 Scanning Mask 3x3

A Parallel Conveyer Algorithm for the Recursive Method of Scanning

Mask for Primary Images Processing

Naiden Vasilev
Atanaska Bosakova-Ardenska

Abstract: In this paper the recursive method of scanning mask is analysed and one new parallel

conveyer algorithm is proposed based on the parallel algorithm “conveyer processing”- simultaneous
conveyer processing (SCP).

Key words: Parallel Algorithms, Recursive Method of Scanning Mask, Conveyer
Processing.

INTRODUCTION
The images processing is important field of the information processing in the

contemporary computer systems. Some of the fields where the image processing is
essential are robotics, criminology, text recognition, recognition of the targets in military
actions, medicine, mineralogy, cartography and etc. [1].

The method of the scanning mask is one of the methods for primary images
processing [2]. It is founded on every-element visitation of the image matrix with a mask
which includes the surround area of pixels of the
treated element (or pixel). The masks are square
matrixes with an odd number of the raster (3x3, 5x5,
7x7, 9x9). The central element of the mask coincides
with the treated element of the image. Every element of
the mask contains a coefficient (fig.1). The image is
represented by one or more matrixes in dependency of
if it is colour picture or not. The disposition of the pixels
in the matrix is defined by the indexes in the matrix.

The value of the gradation of the treated element
situated under the central element of the mask is
replaced with a value received from the function f(kl,bl) where kl, l=1,2,…,t – are the
coefficients of the mask and bl are the values of bij, I = 1,2,…,m, j=1,2,…,n of the
gradations of the pixels fallen under the mask. The values of t are usually 9, 25, 49 and
81. The type of the function f (kl,bl) specifies the filter. One of the most popular filters is
‘1/9’ where t=9 and all the coefficients have value 1. The function is:

∑∑
==

==
9

1

9

1 9
1

9
1)(

l
l

l
llll bbkbkf (1)

Calculated by this way value becomes the new value of gradation of the processed
element. During this treatment on every next step moving the mask the new values are
used which are obtained from the preceding steps. For this processing the outlying
rows and columns couldn’t be filtered because they couldn’t become central elements.

AIMS
The tasks of images processing are characterized by operations “of the same kind”

executed over large data massives. In some cases the requirements to the computer
systems for the image processing are too high (processing moving objects for example).
This impels the quest of algorithms insuring an acceleration of the processing. One
effective method for reaching a high capacity in image processing is the usage of

- IIIA.19-1 -

International Conference on Computer Systems and Technologies - CompSysTech’06

parallel algorithms. The characteristics of primary image processing are favourable for
invention and usage of parallel algorithms.

The aim of the present work out is to be proposed a parallel algorithm for primary
image processing using the recursive method of a scanning mask which develops and
improves the idea in [6].

ALGORITHM “SIMULTANEOUS CONVEYER PROCESSING” (SPC)
We will propose a parallel algorithm based on the proposed algorithm in [6]

«conveyer processing» (CP). The new points are:
the image processing starts from more than one place simultaneously;
the new values of some elements of the image could be calculated not only with

the new values of four neighbouring elements but with the new values of more
neighbouring elements.

Let the processing starts simultaneously from two places: from the first element

of the first row and from the first element of the last row. The upper half and the
lower half of the image are processed simultaneously like two different images by
the algorithm “conveyer processing” [6]. But the moving of the mask in the lower
half is from left to right and from below upwards. That’s why the new neighbouring
elements taking part in the calculation of the current one are as shown on fig. 2.

Let we are given an image sized 14x18. On fig. 5 and fig. 6 are shown two different
ways of distributing its elements for processing to 16 processors: 8 for the upper half
and 8 for the lower one. Every processor calculates the upper or the lower half of
elements in two neighbouring columns. All the elements with equal number could be
calculated simultaneously. The number of parallel steps is at a minimum for every half
of the image, e. g. the number is equal to the number of parallel steps in PCC (p=2)
18+2x8-8=26 (when sized 8x18) (fig.5).

It is possible another distribution of elements for processing to be allocated to the
processors. For example, if the number of processors is 8 then the number of
processed halves of neighbouring columns is 4. In this case the improvement of the
algorithm compared with algorithm “conveyer processing” is minimal (see table 1).

If this image is processed by the algorithm “conveyer processing” [6], then the
number of parallel steps with 8 processors would be at minimum, e. g. equal to the
number of parallel steps in PCC: 18+2.14-8=38.

During the simultaneous conveyer processing of the image the elements of the
finally processed rows in the upper and the lower half (except the first and the last
element of the rows) can be calculated with 5 new values of the neighbouring elements.
On fig. 5 the elements of these rows are coloured in gray. The neighbour elements in
the upper half with new values for the elements of the finally processed row (except the
first and the last element) are shown on fig. 4, and for the elements of the last
processed row (except the first and the last element) in the lower half – on fig. 3.

- IIIA.19-2 -

International Conference on Computer Systems and Technologies - CompSysTech’06

We will propose the following distribution of output data among the processors
when using local memories:

- in processor Pi i = 1,2,3,…,k/2 are stored the values of the elements of i-number
p columns of the upper half of the image where the counting of the columns starts from
2. We will consider that k is an even number;

- in processor Pi i = к/2+1,…,k are stored the values of elements of i-number p
columns of the lower half of the image where the counting of the columns starts from 2;

- in every processor Pi i = 2,3,…,k/2-1 are stored also the values of elements of
the last column of processor Pi-1 and the first column of processor Pi+1 of the upper half
of the image;

- in every processor Pi i=к/2+2,…,k-1 are stored also the values of elements of the
last column of processor Pi-1 and the first column of processor Pi+1 of the lower half of
the image;

- in processor P1 are also stored the first column of the upper half of the image, the
first column of processor P2 and the first three elements of the firs row of the lower half
of the image;

- in processor Pк/2+1 are stored the first column of the lower half of the image, the
first column of processor Pк/2+2 and the first three elements of the last row of the upper
half of the image also;

- in processor Pk/2 are stored the last column of the image, the last column of
processor Pк/2-1 and the last two elements of the first row of the lower half of the image
also;

- in processor Pk are stored the last column of the image, the last column of
processor Pк-1 and the last two elements of the last row of the upper half of the image
also.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
7 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
8 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
11 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
14

Fig.5 Ddistribution of elements for processing to 16 processors

P9 P10 P11 P12 P13 P14 P15 P16

P1 P2 P3 P4 P5 P6 P7 P8

- IIIA.19-3 -

International Conference on Computer Systems and Technologies - CompSysTech’06

Every processor calculates consecutively the values of elements of its column
(fig.6а). The number of operations completed by every processor for finding one
element is: 9 in the odd-number parallel steps (8 summing-up and 1 division), and 7 in
the even parallel steps (6 summing-up and 1 division). The difference between the
numbers of operations is due to the possibility in the even parallel steps a partial sum to
be used which is received in an odd parallel step (on fig.6а – the vertical arrows). For
example, the partial sum 25 (which is a new value) + 35 + 45 (calculated when finding
the new value of element 34) is used for the finding the new value of element 35 (fig. 5).

In the common case the number of completed operations is 9 for the elements of
every first column of a processor and 7 for the elements of every next column. (The
number of columns processed by every processor could be 2, 3, …etc.)

The exchange interrelations between processors (when the distribution is 2
columns for processing in a processor) are shown on fig.6а. The exchange
interrelations are defined by the explanations given above for finding the processed
elements of the image. It can be seen that on every even parallel step the new values of
elements are transferred to the next processor on the right and on every odd step – to
the processor on the left. On the even parallel steps (for every row except the last one)
every transferred element is necessary for finding the new value of the neighbouring
element on the right side of the same row of the image. On the odd parallel steps (for
every row except the last one) every transferred element is necessary for finding the
new value of the neighbouring element on the left side of the next row of the image.

In the common case, if the number of columns processed in every processor is p =
3,4, … , then the new value of every processed element of the first column of processor
Pi (i = 2,3,… k) is transferred to processor Pi-1, and the new value of every processed
element of the last column of processor Pi (i = 1, 2,3,…k-1) is transferred to processor
Pi+1.

When reaching the last row for processing in every half of the image there are
exchange interrelation between the pairs opposite processors also. Opposite
processors are those which process the same columns. Besides this, every processor
(except the last pair opposite processors: Pk/2, Pk) transfers to the next processor on the
right side of the opposite one as well (fig.6b).

The exchange interrelations considered above are defining the requirements of the
topology of interconnection network of parallel architecture: it can be Two-dimensional
mesh [4].

The number of steps until the last two processors start is:
r = p(k/2 – 1) (2)

where p is the number of columns processed by every processor.
The number of parallel steps where all the processor elements take part is:

q = p(m/2 + 1 – k/2 -1) = p(m-k)/2 (3)
The formulae (2) and (3) are obtained from the formulae for r and q [6] for image

sized (m/2+1)xn. (The two halves of the image are processed simultaneously every of
which by k/2 processors.)

In the common case the number of parallel steps for resolve the problem se is:
se = 2r + q (4)

The number of parallel steps se for resolve the problem, when p=2, will be equal to
the number of steps of PCC [6].

se = s = n + 2(m/2 + 1) - 8 = n + m – 6 (5)

- IIIA.19-4 -

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r S

ys
te

m
s

an
d

Te
ch

no
lo

gi
es

 -
C

om
pS

ys
Te

ch
’0

6

P1

P2

P3

P4

P5

P6

P7

P8

P9

P1

0
P1

1
P1

2
P1

3
P1

4
P1

5
P1

6
1

22

13

,2

2
23

13
,3

3
32

24

12

,2

13
,4

4
33

25

12

,3

13
,5

5
42

34

26

11
,2

12

,4

13
,6

6
43

35

27

11
,3

12

,5

13
,7

7
52

44

36

28

10

,2

11
,4

12

,6

13
,8

8
53

45

37

29

10

,3

11
,5

12

,7

13
,9

9
62

54

46

38

2,

10

9,

2
10

,4

11
,6

12

,8

13
,1

0

10

63

55

47

39

2,
11

9,
3

10
,5

11

,7

12
,9

13

,1
1

11

72

64

56

48

3,
10

2,

12

8,
2

9,
4

10
,6

11

,8

12
,1

0
13

,1
2

12

73

65

57

49

3,
11

2,

13

8,
3

9,
5

10
,7

11

,9

12
,1

1
13

,1
3

13

74

66

58

4,

10

3,
12

2,

14

8,
4

9,
6

10
,8

11

,1
0

12
,1

2
13

,1
4

14

75

67

59

4,

11

3,
13

2,

15

8,
5

9,
7

10
,9

11

,1
1

12
,1

3
13

,1
5

15

76

68

5,
10

4,

12

3,
14

2,

16

8,
6

9,
8

10
,1

0
11

,1
2

12
,1

4
13

,1
6

16

77

69

5,
11

4,

13

3,
15

2,

17

8,
7

9,
9

10
,1

1
11

,1
3

12
,1

5
13

,1
7

17

78

6,

10

5,
12

4,

14

3,
16

8,
8

9,
10

10

,1
2

11
,1

4
12

,1
6

18

79

6,

11

5,
13

4,

15

3,
17

8,
9

9,
11

10

,1
3

11
,1

5
12

,1
7

19

7,
10

6,

12

5,
14

4,

16

8,
10

9,

12

10
,1

4
11

,1
6

20

7,
11

6,

13

5,
15

4,

17

8,
11

9,

13

10
,1

5
11

,1
7

21

7,

12

6,
14

5,

16

8,

12

9,
14

10

,1
6

22

7,

13

6,
15

5,

17

8,

13

9,
15

10

,1
7

23

7,
14

6,

16

8,
14

9,

16

24

7,
15

6,

17

8,
15

9,

17

25

7,

16

8,

16

26

7,

17

8,

17

Fi

g.
 6

 (а
) D

di
st

rib
ut

io
n

of
 e

le
m

en
ts

 fo
r p

ro
ce

ss
in

g
to

 1
6

pr
oc

es
so

rs

- IIIA.19-5 -

International Conference on Computer Systems and Technologies - CompSysTech’06

Fig. 6 (b) Ddistribution of elements for processing to 16 processors

In table 1 and 2 are shown the values of parameters for images sized 14x18 and
768х1024.

Table 1 Comparison between algorithms CP and SCP for image sized 14x18

Algorithm s r q k p Elements

per
processor

CP 38 14 10 8 2 24
SCP 26 14 -2 8(16) 2 12
SCP 36 12 12 4(8) 4 24

Table 2 Comparison between algorithms CP and SCP for image sized 768x1024

Algorithm s r q k p

CP 2552 1020 512 511 2
SCP 1786 1020 -254 (511)1022 2

- IIIA.19-6 -

International Conference on Computer Systems and Technologies - CompSysTech’06

CONCLUSIONS AND FUTURE WORK
The present work out is a continuation and a development of the proposed algorithm

in [6] for «conveyer processing» (CP). One parallel algorithm of the recursive method of
scanning mask is proposed- SCP.

Tables 1 and 2 show that the proposed algorithm have better parameters than the
algorithm CP. In the algorithm SCP there are the least number of parallel steps.

Note that in proposed algorithm the two rows in the middle are calculated with 5 new
values (but not with 4 as it is for the other elements).

The future directions for development are related with a search of other parallel
algorithms with improved parameters of the considered problem and with a search of
parallel algorithms for other similar tasks as well.

REFERENCES
[1] Gonzalez, “Digital image processing” second edition, 1987г.
[2] A. Bosakova-Ardenska, N. Vasilev, Parallel algorithms of the scanning mask

method for primary images processing, CompSysTech’04, Rousse, Bulgaria
[3]Э.В.Евреинов, Ю.Г.Косарев, “Однородные универсальные вычислительные

системы высокой производительности”, Издательство “Наука” Новосибирск, 1966г.
[4] Seyed H. Roosta, Parallel Processing and Parallel Algorithms: theory and

computation, 2000г.
[5] Vasilev N., Main Principles for Searching and Creating Parallel Algorithms,

Information Technologies and Control, 2004, 2, ISSN 1312-2622.
[6] Vasilev N., Bosakova-Ardenska A., One Parallel Algorithm of the Recursive

Method of Scanning Mask for Primary Images Processing, Computer Scince'04, Sofia,
Bulgaria

ABOUT THE AUTHOR
Assoc.Prof. Naiden Vasilev, PhD, Department of Computer Systems and

Technologies, Technical University Sofia, Branch in Plovdiv, Phone: +359 659 705, Е-mail:
mnvasilev@yahoo.com.

PhD student Atanaska Bosakova-Ardenska, Department of Computer Systems and
Technologies, Technical University Sofia, Branch in Plovdiv, Phone: +359 659 704, Е-mail:
abosakova@yahoo.com.

- IIIA.19-7 -

