
International Conference on Computer Systems and Technologies - CompSysTech’06

Object-oriented Paradigm as Evolution of Structured approach in

Programming

Galina Istatkova

Abstract: A viewpoint is given about structured programming (SP) as a fundamental approach for
complex software system development independent from procedural paradigm. The multi-interface program
module form – class, entered in object-oriented paradigm (OOP) is considered as a long evolutionary
process in informatics aiming to improve SP efficiency. A new form of structured algorithm is proposed as a
collection of functional threads corresponding to universal function Fgeneric. Four possible implementations of
Fgeneric in procedural and object-oriented paradigms are given and compared. Functional library with hidden
global data structure is considered as a procedural form of class entered in software engineering to improve
SP efficiency for complex system development using procedural programming languages. The second
software crisis in procedural SP is explained by defining the task to find all functional threads in complex
system needed for testing as NP-hard problem. Statistic data about extremely reduce of programmer’s
productivity in large software projects are discussed and a function extrapolated statistic data is used for the
forecast of programmer’s productivity as a function of system size and complexity. Using the object-oriented
interpretations of Fgeneric some of the concepts of OOP such as static and dynamic polymorphism are
discussed.

Key words: Structured programming, algebraic model of algorithms, procedural and object-oriented
paradigm, NP-hard problem.

INTRODUCTION
Majors in computer science accept SP as a subset of procedural paradigm. In this

report SP is considered as a fundamental approach independent from procedural
paradigm and intended for complex software system design and development. In brief SP
[1, 2] may be defined as a methodology including two basic principles:

1. The hierarchical module decomposition of system (top-down, bottom-up or the
combination of two approaches);

2. Using only structured algorithms in program modules at all layers.
The first principle provides the minimal connection between modules needed for

parallel work of programmers which results in significant development time reduction. The
second one ensures the possibility of static verification (at least as the theoretical
possibility) and dynamic test of algorithms. The main goal to apply these principles for
design and development the complex software system is to create reliable systems for
short time. In fact, the hierarchical module decomposition could be considered as a
profound method of complex system design which was mapped into informatics from the
system control theory by Dijkstra, Wirth, and a lot of others computer scientists.

The intent of this report is to prove that object-oriented programming developed as
the dominant programming methodology during the mid-1980s, isn’t a revolution in
informatics but rather a long evolutionary process aiming to improve the SP efficiency for
complex system development. This process is described at the view point of program
module form transformation – from the single-interface procedure to multi-interface class in
OOP.

FIRST SOFTWARE CRISIS
Italian mathematicians Boehm and Jacopini proved that every algorithm can be

transformed into structured form - a sequence of control constructs Ci with one input and
one output - C1 → C2 → … → Cn. In years when structured theorem was published the
programming language was widely used for scientific applications was Fortran and
applying go to statement was a programming style. Using go to statement results very
easily in producing inconsistent, incomplete and generally unmaintainable so-called
spaghetti code. In a large program with a lot of go to statements finding the number of
paths from the first node to the final one in algorithm graph model are needed for testing

- II.6-1 -

International Conference on Computer Systems and Technologies - CompSysTech’06

should be considered as NP-hard problem because it is similar to the shortest path
problem in graph theory[3]. It’s possible to say that this kind of programming style was the
main reason for the first software crisis. In brief it might be described as the problem to
develop complex software projects. The difficulty to test programs developed with
spaghetti style was the reason for total failure of many big software projects including
system catastrophes in NASA caused due to programmer’s errors. Switching to SP was
the only possible way to overcome the first software crisis in procedural programming and
had been understood by outstanding computer scientists as well as by managers in
software industry. IBM researcher Mills and scientist Niklaus Wirth developed SP concepts
for practical use and tested them in a 1969 project to automate the New York Times
morgue index. The engineering and management success of this project led to the spread
of structured programming through IBM and the rest of computer industry [2].

FUNCTIONAL MULTI-THREAD MODEL OF STRUCTURED ALGORITHM
Obviously Boehm-Jacopini model is a procedural-oriented one and can be

implemented only as a single-interface program module - procedure, subroutine or
function. Let’s assume the other form of structured algorithm – a collection of parallel
functional threads one of which can be selected during execution. This model corresponds
to universal function Fgeneric. Fgeneric is a mathematical model of universal program that
theoretically can include all other programs [5]:

F generic(F1, F2,…Fn,i) = F(i), where
Fi is a functional thread { f1,f2,…fk}, 1 ≤i≤n.

The main advantage of the functional model of structured algorithm is its
independence of program module form. As it is shown on fig.1 Fgeneric can be implemented
as a procedure, or as a functional library, or as a class and hierarchy of classes. This
property allows SP efficiency to be compared in procedural and object-oriented
programming as well as to be used to see evolutionary process of program module form
transformation.

Accepting that functional model isn’t a traditional form of algorithm one could ask
whether is it possible to convert procedural model of structured algorithm to Fgeneric?

The answer to this question is given by author in earlier report [6], where using
algebraic model of structured algorithms in Boolean algebra of algorithms has been proved
that procedural form C1→C2→ … →Cn can be transformed to Fgeneric:
 Fgeneric = P1F1(X1) v P2F2(X2) v … v PnFn(Xn), where

Pi is the logical expression defined the type Xi - the set of values needed for
correct execution of Fi..

WHY DOES SP LOSE ITS EFFICIENCY IN PROCEDURAL PROGRAMMING?
Let us to use the number of functional threads N as the quantity of functional complexity

of program system. The amount L of layers in hierarchical module decomposition is the
other way to estimate the system’s complexity and the value of N might be considered as
function F(L). Let’s to accept that the lowest layer L0 of the system has the minimal level of
complexity N =1 and on the next upper layer the programs have algorithms include m if
statements with functional operator f = Fgeneric. In this case the number of the functional
threads on the layer Lj (1 < Lj < L)can be estimated by the following formula:

 2m
[1] N(K, Lj) =∑ K(Lj-1)i

m ≈ 2mKm
 i=1

The value of K in [1] is the average number of threads in fi the layer Lj-1. It was
accepted too that all possible threads are logically selected or in other words the maximal
possible value is used (the minimal number of threads is 2 and correspond to case when
all logical expressions in conditional operators are equivalent). For Lj=2 the value of K is 1
as was mentioned above and N = 2m. The problem - extremely increasing of number of
threads, will start when program with the number of functional threads K >> 1 should be

- II.6-2 -

International Conference on Computer Systems and Technologies - CompSysTech’06

embedded as a functional operator fi in control construction such as a conditional operator
or switch in the algorithms on the next top layer. For example, if K > 100 then N≈
2m100m and the threads defining problem becomes NP-hard as well as the testing task.
This process is known as the combinatory explosion and it’s important to notice that this
problem can’t be avoid when the complexity of program system expressed by the number
of level L and the number of functional threads in a procedure will increase. As the result
programmer’s productivity in large and complex projects decreases significantly.

Fig.1 Structured algorithm interpretation in procedural and object-oriented programming
Statistic data about programmer’s productivity as the function of software system

complexity given by James Martin [5] are shown in table 1.

- II.6-3 -

International Conference on Computer Systems and Technologies - CompSysTech’06

System size-number of program’s row

Productivity- row’s number per year

512.000 800
64.000 1300
16.000 2000
2.000 4000
500 8000

<500 15.000
Table1. Programmer’s productivity

James Martin used as the value of the system complexity the number of program code
rows. These statistic data can be extrapolated with function f(x) =ax-b, where x is the
system’s size, a = 117089.79, b = 0.398. The graphic of this function and statistic data are
given on fig.2 – screen shot of MFC Windows program written by the author. The number
of program’s rows could be obtained very easy for every software system but this
coefficient hides the functional complexity – the number of functional threads N. To use
formula N = 2mKm it’s needed to define K=f(system size) for the layer L-1 and m for the
upper layer L. To calculate N as the function of program’s size let’s to accept m=2 and K=
size/1000.0 what means that program module with 1000 rows might be defined with
minimal functional complexity. In this case N(size)= 4(size/1000.0)2. The graphic of this
function is rendered in the same graphic (fig.3) and illustrates that the programmer’s
productivity reducing can be explained by extremely increasing of number of functional
threads. Using the function f(x)=ax-b extrapolated statistic data 5 new values of
programmer’s productivity for larger program’s size were calculated. These values are
given in table 2.

System size-number of program’s row

Productivity- row’s number per year

(calculate using ax-b)
1.000.000 479
10.000.000 191

100.000.000 76
1000.000.000 30

10.000.000.000 12
Table 2. The forecast for the programmer’s productivity

This strong reducing of programmers' productivity in complex and large program system
as well as the difficulties to define all threads needed to test system could be considered as
the reason for the second crisis in software industry in 1980’s. This crisis had done the question
was asked by professor Dijkstra :“Whether it’s possible at all to develop complex system
and what must be done to develop reliable complex systems which can be tested
entirely”[2] significantly more actual problem in 80’s then in 60’s. One thing was obvious –
this problem can be resolved using procedural SP because the procedural form of single-
interface doesn’t already correspond to the functional complexity of program module. This
contradiction between old form of program module and new complexity of system can’t be
resolved in the frame of procedural paradigm. Having analyzed formula 1 one might see
that the only way to have the number of functional threads in the range allowing system
testing is using KL=1 for functional operators in algorithms at all layers of the system. In
procedural paradigm it would be achieved thereby by implementation of Fgeneric as
functional library (fig.1) what could be considered as procedural form of class.

FUNCTIONAL LIBRARY AS AN INTERMIDIATE STEP FROM PROCEDURAL SP
TO OBJECT-ORIENTED

One of SP recommendation is usage of so-called open data interface what means that
global variables should not be used because they connect modules and prevent parallel

- II.6-4 -

International Conference on Computer Systems and Technologies - CompSysTech’06

work of programmers. Instead procedures should use local variables and take arguments
by either value or reference. With system hierarchical complexity increasing the number of
embedded structures and union of structure becomes so large that open data interface
becomes difficult enough for practical usage and became the source of structural conflict
and errors by incorrect setting of arguments values. The main reason for structural conflict
in procedural programming is the difficulty to declare data structure for all layers in
system’s decomposition. For example, if top-down method is used for designing it’s
necessary to define the structure for the module laid on the upper layer. This structure
must include structures and data types for all layers that eventually will be designed. In
other words it is needed data interfaces for all modules to be defined at the designing
stage. Besides to allow parallel work of programmers it’s very important to ensure that
data interfaces will not be changed. The necessity of freezing data interfaces is the main
reason for potential structural conflict because a programmer can’t change interface when
the structural error will be discovered. To minimize data interfaces, data structures which
are common for more of functions in library had usually been “hidden” in global variables.
The functional library with this kind of encapsulation of data could be considered as an
intermediate step to class and object in OOP. There were a lot of other questions needed
to be resolved and one of them was connected with interaction between modules. How
could modules laid on the same layer to call functions of each other? Many new
approaches had been developed in OOP started with abstract data types and ended with
Frame works (typical example is MFC in Visual C++), Automation, ActiveX controls, COM,
DCOM [7]. These module interactions problems can’t be explained using Fgeneric but some
of OOP concepts can be described using object-oriented interpretation of Fgeneric (fig.1).

OBJECT-ORIENTED INTERPRETATIONS OF Fgeneric
The first interpretation of Fgeneric is a class, the second – hierarchy of classes (fig.1). The

data X0, Y0 which are common for all functions are encapsulated. Encapsulation allows
function’s interfaces to be decreased and thereby to overcome the problem of open data
interface in procedural SP. It might be said that the most famous new concept in OOP is
polymorphism. The concept of polymorphism means that functions can be applied to
values of different types. In fact, polymorhism is applied to basic data operations such as
+,-,/ etc in the all programming languages. In OOP polymorhism is expanded to be used
with programmer’s operations – methods or member-functions of classes. There are two
types of polymorhism – static and dynamic. Static means that the same name of function
will be used for different data types which have been already defined by programmers. For
example if all Fi functions in class implementation of Fgeneric (fig.1) act similarly upon
different data type (X/Xi) then only one name Fgeneric could be used. Using static
polymorphism the system dictionary could be decreased significantly. The idea of dynamic
or parametric polymorphism is to define data operations to the unknown data type that will
be added to the system in the future. These operations are called pure virtual functions. In
COM and DCOM they are known as interfaces. The implementation of as class hierarchy
gives the possibility to create classes which inherit the common data and interfaces from
base class. Hierarchy of classes is used for developing object-oriented frame works. MFC
(Microsoft Foundation Classes) in C++ Visual is typical example [7].

CONCLUSIONS
Of course, OOP can’t resolve the decomposition problem of large software system and

this problem might be considered as NP-hard because it could be compared with the
problem of dividing graph into sub-graphs using such criteria as the minimal connections
between sub-graphs [3]. Understanding that every algorithm has functional form could help
programmers to resolve two very important practical tasks:
1. To test algorithm entirely trying to define all functional threads and data sets needed for

correct executions.
2. To transform procedural implementation of software systems to object-oriented one

- II.6-5 -

International Conference on Computer Systems and Technologies - CompSysTech’06

using functional model of algorithms.

Fig.2 Statistic data about programmers productivity and function extrapolated these data

Is it needed to teach the structured programming nowadays? The answer is yes
because OOP is before everything is structural programming and to know how to design
and to develop structured algorithms must be studying before programming in C++, Java
or PHP.

REFERENCES
[1]Dijkstra Edsger W., Structured Programming, Technological University

EINDHOVEN, The Netherlands August 1969.
[2]Dahl O. J., E. W. Dijkstra, and A. R. Hoare. Structured programming. Acad. Pr., 2

edition, 1973.
[3] Garey, Michael, David. Johnson. A Guide to the Theory of NP-Completeness. Bell

Laboratories, New Jersey, W. H. Freeman and Company, San Francisco, 1979.
[4] James M., . Forth Generation Languages, Principles. Prentice-Hall, Inc, 1985.
[5] Cutland, N., Computability. An introduction to recursive function theory.

Cambridge University Press, Cambridge, 1980.
[6] Istatkova G. Algebra of algorithms in procedural and object-oriented structured

programming. Automatica & Informatics, N. 3-4/2001, 56-62
[7] Kruglinski David,Inside Visual ++ 6.0, Microsoft Press, 1999.
ABOUT THE AUTHOR
Engineer, research worker Galina Istatkova , Institute of Computer and

Communication Systems, Bulgarian Academy of Science. Phone: (359 2) 76 77 01,
GSM – +359 898 89 30 59, E-mail: galina_istatkova@yahoo.com.

- II.6-6 -

