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Abstract: Parameter learning from data in Bayesian networks is a straightforward task. The average 
number of observed occurrences is stored in a conditional probability table, from which future predictions can 
be calculated. This method relies heavily on the quality of the data. A data set with ‘rare events’ will not yield 
statistically reliable estimates. Bayesian networks allow prior and posterior learning. In this paper, new prior 
assessment techniques are introduced to obtain stable priors for a conditional probability table. 
These learning algorithms are implemented and tested, and the results will be presented. 
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INTRODUCTION 

 
A Bayesian network [8, 10] is a directed acyclic graph with each node representing a 
variable and each arc representing a causal relation between two variables. Variables are 
characterized by a probability distribution for each value. The probability distribution of 
each node is influenced by the states (for discrete nodes) or values (for continuous nodes) 
of the parent node. The conditional probabilities of a node are stored in a conditional 
probability table (CPT). The CPT is needed to calculate any conditional probability in the 
model, inference [5]. The size of the CPT depends on the number of states (s), the number 
of parents (p), and the number of parent states (sp) in the following way: 

p
pssCPTsize )()( ⋅=  (1) 

 
For every possible combination of parent states, there is an entry listed in the CPT. Notice 
that for a large number of parents the CPT will expand drastically. Assume the variables in 
the Bayesian network illustrated in Figure 1 are binary. 
 

 
Figure 1: Example Bayesian network 

 
The conditional probability table of node C will have eight entries, with four degrees of 
freedom. The CPT for node C is given in Table 1. 
 

Table 1: CPT for node C 
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The number of degrees of freedom of a CPT with number of states (s), number of parents 
(p), and number of parent states ( ps ) is )1( −ss p

p . Values for θ  can be obtained from the 

data by parameter learning. abθ  is the number of occurrences ( abc, ) divided by the 

number of occurrences ( ab ), or ( abc, ) + ( abc, ). In general, if for a variable X, with states 

Nxx ,...,1 , ip is the i-th combination of parent states, then ijθ denotes the probability of 

jx given ip . Let ),( ji xpo  be the number of observations ),( ji xp  in the data set. ijθ can 

now be calculated as follows: 
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Parameter learning is basically counting the number of observations of a specific event. 
Notice that the accuracy of θ  heavily depends on the number of observed events. A large 
number of observations will result in a more accurate estimate than just a small sample. 
Therefore, large data sets usually provide good, stable models. Unfortunately many real-
world data sets are imbalanced; some states of the response variable may be dozens to 
thousands of times less likely than other states. This is the case in, for example, customer 
bankruptcies in banks, international armed conflicts, or epidemiological infections. Thus 
the effect of having a large data set available is canceled by the fact that it contains only a 
small number of ‘interesting’ records. Therefore, a model based on such data may be 
severely biased or highly unstable. 
 

PREVIOUS WORK 
 

Rare event problems occur in generalized linear models, such as logistic regression, but 
also in models learned from data, such as neural networks and Bayesian networks. 
Especially in the case of generalized linear models, techniques such as prior correction 
and weighting have been developed to discard most of the ‘uninteresting’ part of the data 
set without much performance loss [4]. Additionally there are ways of reducing bias and 
variance [9]. In Bayesian networks, small sample problems are usually solved by setting a 
good prior distribution [1, 6], based on expert knowledge. However, if this expert 
knowledge is not available, an acceptable prior, based on the data, needs to be set. [7] 
proposes noisy-OR to obtain priors. This approach uses cutting to shift from prior to 
posterior estimate. Naive Bayes is a very good classifier, as described in [2]. Parameter 
learning is explained in detail by David Heckerman in [3].  
Inference in a Bayesian network is the calculation of conditional probabilities, given the 
probabilities in a CPT. Inference is based on two rules. The first one is Bayes’ rule, which 
is defined as: 
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The second rule is the expansion rule, which is defined for binary variables 
( )(1)( xpxp −= ) as: 
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Using these two rules, in the example in Figure 1, )|( cap  can now be calculated: 
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Inference will be used for the assessment of naive Bayes priors. 
 

CPT Calculation 
 
Deriving CPT parameters using a prior-posterior approach consists of three stages: 

1. prior assessment 
2. posterior assessment 
3. merging 

 
The posterior assessment is equivalent with CPT parameter learning, shown in equation 2, 
and will not be discussed here. First, the merging method is described and then the prior 
assessment. 
 
Merging 
 
The merging process of priors and posteriors can be handled in a couple of ways. [7] uses 
a cut value for the number of observations, in that paper called smoothing. If, in the data 
set, a combination of parent states pi occurs less than the cut value, the prior will be used 
in the CPT. Otherwise, the posterior will be used. Let the prior for ijθ be ijp  , the posterior 

ijr  , and the cut value c, the smoothing merging is defined as: 
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Substitution of equations 2 and 6 yields: 
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In this paper, a gentle transition is proposed, by weighting the priors. The priors will 
receive an integer value, weight w, which is equivalent to a number of observations. The 
resulting CPT entries will be a weighted average of the priors and the posteriors:  
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If ) x,o(p ii  is low, the CPT value will mainly be based on the prior, however, if ) x,(p ii is 
often observed in the data set, the data will influence the CPT value more than the prior. 
Basically this effect is the same as smoothing, only the transition is gentler. In smoothing 
and weighting, the values for c and w, respectively, need to be set. The tests in Section 4 
show that these parameters have the greatest effect if a value between 5 and 80 is 
chosen, preferably between 10 and 40. If the values are too low, the procedure will be 
similar to normal CPT learning. If the values are too high, the posteriors will have very little 
effect. Notice that for a model with extremely good priors, the weight or cut value should 
be very high. 
 
Prior Assessment 
 
A CPT contains very detailed information about conditional probabilities for all possible 
parent states. As shown in the introduction, the number of degrees of freedom expands 
rapidly if the number of parents and the number of parent states increase. A stable prior 
should therefore be derived from a low number of degrees of freedom, but as accurate as 
possible. [7] propose the usage of noisy-MAX priors, because it is a good modeling 
technique for rare events. Noisy-MAX makes the assumption that the state of the response 
variable is a logical combination of the states of the input parameters. In practice, for a lot 
of data sets, noisy-MAX shows high performance, because in many cases, an effect is an 
addition or multiplication of the causes. An example of a binary noisy-MAX (noisy-OR) 
model is given in Figure 2. 

 
Figure 2: Noisy-MAX network 

 
Aside from the input variables  .X . . X N1  and response variable Y, there is a set of inhibitor 

nodes  .Z . . Z N1 . iX can cause iZ  to be present with a probability ic , but absence of iX  

always implies absence of iZ . The CPT of node Y is similar to a logical MAX gate. Naive 
Bayes is in many cases a superior classifier [2]. Just as noisy-MAX, naive Bayes has a 
relatively low number of degrees of freedom. The performance as a classifier is slightly 
better than noisy-MAX. The network structure is completely opposite from a regular CPT 
network. It may be against intuition to use priors from an opposite network. In the prior 
assessment, the causalities are less relevant than how )p|p(y i  is calculated. A naive 
Bayes network makes very unrealistic assumptions about causality. It assumes the 
predictive variables to be dependent on the response variable. Also, it assumes 
conditional independence between the predictive variables, meaning that given the value 
of Y,  .X . . X N1 are independent. Aside from these assumptions, a naive Bayes model is a 
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very powerful classifier. Inference in a naive Bayes network is not as straightforward as in 
a CPT network. A network with predictive variables  .X . . X N1 and response variable Y with 

states  .y . . y M1 will have the probabilities )p|p(y i  listed in the CPT. In a naive Bayes 
network, these values need to be calculated as follows: 
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The values for )|p(xi y  and p(y) can be obtained by parameter learning in the naive 
Bayes network. ijp from equation 8 can be replaced by the right part of equation 9. Now the 

formula for calculation of the CPT values is complete. 
 
RESULTS 
 

The method above was implemented and tested on a bankruptcy data set from a bank. 
The bankruptcies were rare (around 2% of all records). As a performance measure for 
scoring the models, the GINI index was used. In a graph where a curve is plotted as the 
cumulative bankrupt percentage of clients against the total percentage of clients when they 
are sorted on risk (low risk on the left, high risk on the right), the GINI index is defined as 
the area between the diagonal and the curve (the Lorentz curve) divided by the total area 
under the diagonal. It has a range between -1 and 1, or −100% to 100%. High scores 
indicate good models. The GINI index is widely used in social sciences to measure the 
discriminative power of a model. 
 

Table 2: Performance of models 
 

MODEL GINI 
Naive Weighting W=1 76.4% 
Naive Weighting W=5 77.0% 
Naive Weighting W=10 77.1% 
Naive Weighting W=20 77.2% 
Naive Weighting W=40 77.3% 
Naive Weighting W=80 77.3% 
Noisy-MAX Weighting W=10 71.4% 
Naive Smoothing C=10 75.4% 
Naive Smoothing C=20 76.6% 
Naive Smoothing C=40 77.0% 
Noisy-MAX Smoothing C=20 71.4% 

 
More information about the GINI index and its applications can be found in [11]. A couple 
of modeling methods were compared, of which the results are listed in Table 2. 
Apparently, for this data set, naive Bayes provides much better priors than noisy-MAX. 
This is partly due to the fact that a suboptimal learning algorithm for noisy-MAX is used. 
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Even with EM learning, noisy-MAX scores will not be higher than 76%. Secondly, the 
weighting seems to perform better than the smoothing for this data set. 
 

CONCLUSIONS AND FUTURE WORK 
 

Two improvements to learning for rare event data were suggested in this paper. 
Firstly, weighted merging instead of cutting, which allows a more gentle balance between 
a prior and a posterior. Secondly, inference in a naive Bayes models can provide excellent 
priors for a CPT in a ‘normal’ Bayesian network. 
Compared to existing methods, such as noisy-MAX priors, naive Bayes priors perform 
better on the test data set. Unfortunately, the best performing model on this data set was 
naive Bayes without any posterior learning. Therefore, more data sets to test these 
methods on are required for a definite statement. These initial results are very promising. 
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