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Generic modular framework for robotic arm applications
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Abstract: Robotic manipulators are becoming a very common tool in modern industries and research
laboratories. In order to successfully execute a given task a control software is necessary that sends and
tracks appropriate orders to the robot arm. This paper presents the design principles of a general software
framework capable to control any robot arm with any set of sensors. A possible implementation of such a
general framework is provided together with experiments on a particular robot platform.
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1. INTRODUCTION

The use of robotic manipulators has been growing up dramatically in the last decades [2].
Common applications range from the assembling and welding of different parts in the automotive
industry to the manipulation of unknown objects in space missions [3]. The broad spectrum of
applications has lead to a quite big number of different and specific designs for such robotic
manipulators. Main differences are found in their architectures: number and type of degrees of
freedom (dof), dimensions of its links, actuators or sensors employed.

In order for the robotic device to perform a given task it is necessary to control it, that is
basically, to have the capabilities of, first, sending specific orders to the manipulator, in terms of
positions or velocities of its final effector, and second, sensing the real obtained position or
velocity. Other sensing capabilities may be important depending on the application, such as force
feedback. So, in order to implement a given control algorithm for the manipulator to solve a task, it
is necessary to control its basic functionalities (moving and sensing) which implies the
development of a software platform.

Usually, robotic manipulator and sensors manufacturers supply a set of functions
(Application Programming Interface) to interface with the low level features of robots and sensors
respectively. Those functions need to be integrated within the full software application used to
solve a specific task, which means designing it to specifically interface with those particular APls.
So the application itself is platform dependant and, whenever it would be necessary to change the
robot or any of its sensors, it would also imply an important modification of the control program,
which is, in general, an error full and time consuming task.

Furthermore, as the computational needs of some sensing devices, such as vision based
perception, increase, the need for a distributed control system become more important to keep the
desired performance and real time control. If the software application is not designed to be splitted
between several computers it will be almost impossible to achieve that, but even in that case, it
would be difficult to modify the original communication architecture once designed.

In this paper a modular generic software framework is presented for robotic manipulators. It
helps to minimize the time necessary to complete a full distributed control OS independent
application when using any robotic arm and set of sensors to perform a given task. The software is
designed in such a way that changes in the hardware platform used (as dramatic as using a
completely different manipulator for the same task) imply a minimum reprogramming effort. Section
2 introduces the design principles of this software architecture and a possible implementation is
presented in Section 3. Section 4 reports some results on using the implemented software
framework on a robotic platform and finally, Section 5 concludes the paper.

2. SOFTWARE DESIGN PRINCIPLES
Given a robotic manipulator we want to control it in order to solve a specific task. The control
software should be general for any kind of robot arm and set of sensors. To this aim the main
considered design principles are:
e Modularity and functional separation.
Abstraction.
Distributed capability.
Real time control.
Multi-platform.
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2.1 Modularity and functional separation

Modularity and functional separation [5,1], together with code implementation dependent
principles such as reusability and robustness [6], are the most basic software design principles that
can be found in commercial as well as non-commercial software applications. The aim of
modularity is to encapsulate all the features of a physical or logical entity into some kind of
structure to prevent other entities to directly modify them. Instead, a set of functions is provided for
each of these entities to access their attributes. Such set of functions is usually referred to an
interface, term that will be used all throughout the paper.

Such an interface should provide, first, the necessary functions to modify the entities
attributes and to retrieve their values, and second, provide those functions required to carry out
their specific functionality, such as acquiring data from a sensor or executing a given trajectory with
a robot. Furthermore, modular design allows the software designer to limit the required changes
whenever a module needs to be modified or extended.

The functional separation main issue is to isolate as much as possible the application itself
from the user interface and the underlying hardware. The user interface is the set of functions that
allow the interaction between the user and the software application. For this case the functional
separation is easily accomplished by providing a complete enough interface for the highest
hierarchical module, so the user interface (graphical, command line, web based, etc.) just needs to
call a function or a sequence of functions from the interface to carry out any desired task.

On the other hand, the separation from the low level hardware is much more complicate. It
will always be necessary to develop a device driver for any external device that will depend on the
link type between the external device and the application (RS-232, Ethernet, PCI, etc.). In order to
overcome this problem, each developed device driver should use a virtual communication device
(VCD) which will be used for any input/output access to the external device. It works as a
placeholder for any real communication device and implements all the features needed to provide
an efficient channel of communication: input and output queues for data flux control, asynchronous
notification of received data, multithreaded execution and error handling capabilities; but it not
includes the specific implementation to actually open, configure, close or send and receive data to
and from the external device, which must be defined for each particular implementation.

By using such a VCD it is possible to easily change the way the application interfaces with
the external devices, that is, external devices may be connected either directly or remotely without
modifying the application. This idea is further developed in section 2.3 where the principle of
distributed control is introduced and described.

As outlined at the beginning of this section, these two basic and simple principles apply to
any software application, but, in the specific case of robotic applications, new challenges arise
which can be handled using other design principles as described next.

2.2 Abstraction

Each physical device (i.e. sensor, motor controller, robot, etc.) has a given functionality which
is independent from the particular implementation. So, the corresponding software module has to
provide a generic interface which allows any other module to access all its functionality without
noticing the implementation details.

For the particular case of robotic arm applications, the set of generic modules correspond to
the robot, the force and position feedback devices, the motion controller and each of the motor
controllers. The abstraction of the basic functionality takes place in all of these modules, from the
low level device driver interface to the high level robot control interface.

For example, a motor control module should provide the same functions to configure the
motor motion (absolute or relative motion, motion blending, etc.), to load the motion parameters
(position or speed) and to start and stop the motion whatever the motor controller used. A robot
module should provide the same functions to carry out any arbitrary trajectories, whatever the
kinematic and dynamic models of the robot and the particular feedback devices are.

Therefore, this set of generic modules should provide, first, a generic interface to access
their specific functionality, second, a basic implementation, common to any platform, and, finally,
the necessary communications between the different modules.

All the high level control algorithms need information about the robot's kinematic and
dynamic models, the motors controllers and/or the feedback devices, but due to the generic
interface provided by each module, the control algorithm will be always the same.
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Thus, given a set of generic modules, and in order to adapt the software to a specific
platform, the only functions that are required to be implemented are those describing the robot's
architecture and the ones that interface with the device drivers. Since all the basic control
algorithms and inter-module communications are already implemented, the time needed to migrate
from one platform to another is highly reduced.

2.3 Distributed capability

As the computational needs of some feedback devices increase, it becomes necessary to
split the control application through several computers so as to keep performance and real-time
control. Also, due to the absolutely different requirements for each application, the way the control
software is splitted should be flexible enough to adapt to different configurations with little or no
modification at all of the program.

Given the generic modules introduced in the previous section, the easiest way to split the
application is through these modules. Each of them may be local or remote to the users' computer.
In the former case nothing has to be done since all the modules functionality is directly accessible
through function calls. On the other hand, when a module is executing remotely in another
computer several new features must be added to it. First of all, it is necessary to define a
communication protocol to both, send the commands and parameters, and receive the operation
results. It is required, also, to keep two different versions for each module: one working as a
server, waiting for commands and actually carrying out the necessary actions, and the other
working as a client, sending the commands and waiting for them to end.

Finally, it's also necessary to define a communication device to handle the data transfer
between the host and the client. To this end, the VCD explained in 2.1 can be used given the many
different available possibilities: Ethernet in research environments, CAN bus in industrial
environments or even pipes between processes in the same computer.

A part from the great flexibility in designing distributed control systems, by using this
approach, it is also possible to easily interface the application to a simulator in order to validate the
control algorithms instead of trying them into the real platform.

2.4. Real control

Another design principle that must be taken into account is that most control applications
must execute in real time [4]. This implies that none of the modules introduced so far can be
blocked waiting for data or an event to take place. Since blocking is in general unavoidable due to
the asynchronous nature of the events to wait for, and continuously polling is not efficient in terms
of CPU usage, the use of multiple threads of execution becomes necessary.

Although extremely powerful, multi-threaded applications introduce a lot of new problems
such as thread synchronization, shared memory control and the thread handling itself. The use of
such advanced programming techniques considerably increases the application complexity. In
order to simplify the use of threads, it is necessary to define a new set of modules to handle the
threads, the mutual exclusion methods and the logical events.

In order to include the functionalities to create and handle multiple threads, as well as
transparently handling the shared memory and the logical event notifications used for
synchronization, each of the generic modules introduced in section 2.2 will have either to inherit or
use the new defined thread modules. One of the main problems when using these features is that
they are strongly dependent on the operating system used, issue that shall be addressed in the
next section.

2.5. Multi-platform

Nowadays, both Windows and Linux operating systems (O.S.) are world wide used in most
scientific and industrial environments. A control application that can run in any of these O.S. should
be much more useful. There exist some programming languages specially designed to generate
multi-platform applications but which are not generally suited for real time applications, since they
are interpreted in run time and not compiled before execution (i.e. Java).

Even though, considering the software framework presented so far, only few of the modules
actually depend on the O.S. used. These are the VCD and those used to handle threads, shared
memory and logical events. If the end user interface is based on a windowed graphical scheme, it
will be also necessary to use a library which is independent from the underlying O.S.
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Since the software framework core modules are platform independent, any application built
on top of them will also be platform independent, and even more, the designer may use advanced
programming techniques such as threads and logical events without having to worry about specific
O.S. implementation issues.

3. PROPOSED IMPLEMENTATION

Yet quite powerful, the described approach is difficult to implement due to the high level of
generality implicit in the development of the software framework core. In this section, a possible
implementation is presented using an object oriented programming language (C++). Thus, each
module is implemented as a class which inherits or use the necessary features from the other
classes in the way presented in Fig. 1.

Class CModule is the most important one since each of the generic modules inherit most of
its functionality from it. To comply with the principle of section 2.3, it includes the necessary code to
configure the module in order to be executed locally or remotely and to work as a client or server.

For the case it is configured as a remote client, this class generates the needed commands,
sends them through the VCD (implemented in the class CComm and waits for the answer. On the
other hand, when configured as a remote server, this class waits for commands, executes any
required action and returns the necessary data. CModule also inherits all the necessary features to
handle multiple threads from the class CThread to comply with the principle of real-time control
(section 2.4). Class CThread allows any derived class to handle multiple threads, to assign a
different execution function to each of them and to end threads independently using a unique
finalization event (implemented as a CEvent object). The CThread class also inherits from CMutex
class to handle any shared memory issue.
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Figure 1: Class hierarchy for the software framework core.

The VCD handles the incoming and outgoing data through circular queues implemented in
CQueue. It also inherits from CThread to wait for new data in an independent thread to avoid
blocking the main execution thread. When new data is received, executes a user defined function
and/or stores the new data into the receive queue. This VCD may be used as the base class for
any communication object, so it is only necessary to implement the way to open, configure, close,
read from and write to the specific communication device (Ethernet, RS-232, etc.).

As presented in section 2.2, the generic modules present are the robot module, the force and
pose feedback modules and the motion and motor control modules, which correspond to the
CRobot, CForceFeedBack, CPoseFeedBack, CMotionControl and CMotorControl classes
respectively. Most of the interface functions on these classes are virtual or abstract allowing the
derived classes to redefine or complete the basic implementation (polymorphism).

In order to be able to execute the application in both Windows and Linux as introduced in
section 2.5, all the O.S. dependent classes actually provide the implementation in both O.S., and
only the corresponding part is compiled to generate the final application. These classes provide a
unique interface to the other modules whatever the O.S. is.
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4. ASSESMENT OF RESULTS

The robot platform used to test the software framework presented in this paper consists of a
3 degrees of freedom (dof) modified SCARA architecture robot'. As shown in Fig. 2, the designed
manipulator has four joints, with the particularity that two of them have been attached together
(joints labelled O and O’ in Fig. 2 so the movement of point T in the figure is straight along axis x.
The other two degrees of freedom are used to control the pan (joint T) and tilt (joint Q) of the end
effector. The physical implementation is shown in Fig. 2.

Lateral view

Figure 2: On the left, the top and lateral view of the robot architecture, on the right the
physical implementation of the robot architecture.

Three actuators are needed to move the robot articulations. Chosen devices have been DC
motors with a planetary gear box including an incremental magnetic encoder in the motor shaft in
order to feedback the axis position. Additionally, a 2 dof force sensor based on strain gauges has
been fixed to the end effector of the manipulator. It allows measuring the force components that
are transversal to the robot end effector. The whole system is completed with an external optical
position feedback sensor based on a 2D Position Sensing Device (PSD). All the external devices
(motor controllers and feedback devices) communicate with the computer using a unique serial
link. A specific designed serial hub is used to handle the data packets in and out of each device.

The software architecture used for this particular application is shown in Fig. 3. The classes
CAgullaMotorControl and CAgullaMotionControl inherit directly from CMotorControl and
CMotionControl respectively and they only extend the configuration functions of the base class to
send the corresponding commands to the real controllers and define the main control functions.

The pose and force feedback classes CAgullaPoseFeedBack and CAgullaForceFeedBack
inherit from CPoseFeedBack and CForceFeedBack respectively. They implement the low level
data acquisition functions. CAgulla inherits from CRobot and it just defines the kinematic and
dynamic models of the robot described at the beginning of this section.
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Figure 3: Class hierarchy for the software application.

Class CHub implements a VCD hub so any object derived from CComm may be used. It
inherits from CThread to handle incoming data in any of the communication devices without
blocking the main thread. In this case two communication devices are used, CCom to send and

! The robot, named Agulla, has completely been designed and built in the IRI under the research grant CeRTAP (Ref.
100544).
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receive data from the low level hardware and CPipe to exchange data between the application
modules. Both CPipe and CCom, just implement the low level physical access to the
communication devices. Another communication class is used to split the application through
several computers using a Local Area Network (CSocket) to test the distributed capability.

By using the base framework introduced in section 3 to design a software application for this
particular platform, it has been possible to develop a control software using external position and
force feedback in a short time. The only modules that were necessary to be implemented were the
kinematic and dynamic models of the robot, adapting the motor control and feedback modules to
the characteristics of the particular device drivers and the way those modules interface to the
hardware through the serial hub (CHub).

Finally, it has been possible to split the control application through several computers using
the distributed capability principle, in which the software framework is based, with minimum
modification of the source code. For every remote module it was only necessary to assign a
communication device (CSocket) and create a main program which generates the corresponding
part of the control application for each computer.

5. CONCLUSIONS AND FUTURE WORK

Given a robotic arm we want to control it in order to solve a task. The control software should
be general for any kind of robot arm and set of sensors. This paper introduces a set of design
principles which seek to reduce robotic applications design and implementation time so reducing
the errors present in any practical implementation as well. Then, a possible implementation of the
general software framework proposed in section 2 is developed. Experiments show that the
solution presented in this paper, although its limitations, allow the robotic applications designer to
save development time while keeping the overall complexity low. Although the control algorithms
always worked, due to the bandwidth requirements of some modules (i.e. motor control), the
performance achieved for some configurations is severely limited. There exists open-source
applications which handle similar problems [7,8] but they are not well fitted for small control
applications like the one presented in section 4 due to the high complexity involved.

We have learnt that because of limitations in the programming language used to develop the
application, some of the design principles presented in section 2 can not be completely fulfilled,
and the final application itself is highly sensitive to implementation issues. Also, to completely verify
the design principles it would be necessary to evaluate the effort required to design a control
application for multiple and heterogeneous platforms.
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