
International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 
             

 
Generic modular framework for robotic arm applications 

 
Sergi Hernandez Juan, Josep M. Mirats Tur 

 
Abstract: Robotic manipulators are becoming a very common tool in modern industries and research 

laboratories. In order to successfully execute a given task a control software is necessary that sends and 
tracks appropriate orders to the robot arm. This paper presents the design principles of a general software 
framework capable to control any robot arm with any set of sensors. A possible implementation of such a 
general framework is provided together with experiments on a particular robot platform. 

 
Key words: Computer Systems and Technologies, Software design, Robotic arm manipulators. 

 
1. INTRODUCTION 

The use of robotic manipulators has been growing up dramatically in the last decades [2]. 
Common applications range from the assembling and welding of different parts in the automotive 
industry to the manipulation of unknown objects in space missions [3]. The broad spectrum of 
applications has lead to a quite big number of different and specific designs for such robotic 
manipulators. Main differences are found in their architectures: number and type of degrees of 
freedom (dof), dimensions of its links, actuators or sensors employed. 

 In order for the robotic device to perform a given task it is necessary to control it, that is 
basically, to have the capabilities of, first, sending specific orders to the manipulator, in terms of 
positions or velocities of its final effector, and second, sensing the real obtained position or 
velocity. Other sensing capabilities may be important depending on the application, such as force 
feedback. So, in order to implement a given control algorithm for the manipulator to solve a task, it 
is necessary to control its basic functionalities (moving and sensing) which implies the 
development of a software platform. 

 Usually, robotic manipulator and sensors manufacturers supply a set of functions 
(Application Programming Interface) to interface with the low level features of robots and sensors 
respectively. Those functions need to be integrated within the full software application used to 
solve a specific task, which means designing it to specifically interface with those particular APIs. 
So the application itself is platform dependant and, whenever it would be necessary to change the 
robot or any of its sensors, it would also imply an important modification of the control program, 
which is, in general, an error full and time consuming task. 

Furthermore, as the computational needs of some sensing devices, such as vision based 
perception, increase, the need for a distributed control system become more important to keep the 
desired performance and real time control. If the software application is not designed to be splitted 
between several computers it will be almost impossible to achieve that, but even in that case, it 
would be difficult to modify the original communication architecture once designed. 

In this paper a modular generic software framework is presented for robotic manipulators. It 
helps to minimize the time necessary to complete a full distributed control OS independent 
application when using any robotic arm and set of sensors to perform a given task. The software is 
designed in such a way that changes in the hardware platform used (as dramatic as using a 
completely different manipulator for the same task) imply a minimum reprogramming effort. Section 
2 introduces the design principles of this software architecture and a possible implementation is 
presented in Section 3. Section 4 reports some results on using the implemented software 
framework on a robotic platform and finally, Section 5 concludes the paper. 
 
2. SOFTWARE DESIGN PRINCIPLES 

Given a robotic manipulator we want to control it in order to solve a specific task. The control 
software should be general for any kind of robot arm and set of sensors. To this aim the main 
considered design principles are: 

• Modularity and functional separation. 
• Abstraction. 
• Distributed capability. 
• Real time control. 
• Multi-platform.  

- II.3-1 -



International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 
             

 
2.1 Modularity and functional separation 

Modularity and functional separation [5,1], together with code implementation dependent 
principles such as reusability and robustness [6], are the most basic software design principles that 
can be found in commercial as well as non-commercial software applications. The aim of 
modularity is to encapsulate all the features of a physical or logical entity into some kind of 
structure to prevent other entities to directly modify them. Instead, a set of functions is provided for 
each of these entities to access their attributes. Such set of functions is usually referred to an 
interface, term that will be used all throughout the paper. 

Such an interface should provide, first, the necessary functions to modify the entities 
attributes and to retrieve their values, and second, provide those functions required to carry out 
their specific functionality, such as acquiring data from a sensor or executing a given trajectory with 
a robot. Furthermore, modular design allows the software designer to limit the required changes 
whenever a module needs to be modified or extended. 

The functional separation main issue is to isolate as much as possible the application itself 
from the user interface and the underlying hardware. The user interface is the set of functions that 
allow the interaction between the user and the software application. For this case the functional 
separation is easily accomplished by providing a complete enough interface for the highest 
hierarchical module, so the user interface (graphical, command line, web based, etc.) just needs to 
call a function or a sequence of functions from the interface to carry out any desired task. 

On the other hand, the separation from the low level hardware is much more complicate. It 
will always be necessary to develop a device driver for any external device that will depend on the 
link type between the external device and the application (RS-232, Ethernet, PCI, etc.). In order to 
overcome this problem, each developed device driver should use a virtual communication device 
(VCD) which will be used for any input/output access to the external device. It works as a 
placeholder for any real communication device and implements all the features needed to provide 
an efficient channel of communication: input and output queues for data flux control, asynchronous 
notification of received data, multithreaded execution and error handling capabilities; but it not 
includes the specific implementation to actually open, configure, close or send and receive data to 
and from the external device, which must be defined for each particular implementation. 

By using such a VCD it is possible to easily change the way the application interfaces with 
the external devices, that is, external devices may be connected either directly or remotely without 
modifying the application. This idea is further developed in section 2.3 where the principle of 
distributed control is introduced and described. 

As outlined at the beginning of this section, these two basic and simple principles apply to 
any software application, but, in the specific case of robotic applications, new challenges arise 
which can be handled using other design principles as described next. 

 
2.2 Abstraction 

Each physical device (i.e. sensor, motor controller, robot, etc.) has a given functionality which 
is independent from the particular implementation. So, the corresponding software module has to 
provide a generic interface which allows any other module to access all its functionality without 
noticing the implementation details. 

For the particular case of robotic arm applications, the set of generic modules correspond to 
the robot, the force and position feedback devices, the motion controller and each of the motor 
controllers. The abstraction of the basic functionality takes place in all of these modules, from the 
low level device driver interface to the high level robot control interface. 

For example, a motor control module should provide the same functions to configure the 
motor motion (absolute or relative motion, motion blending, etc.), to load the motion parameters 
(position or speed) and to start and stop the motion whatever the motor controller used. A robot 
module should provide the same functions to carry out any arbitrary trajectories, whatever the 
kinematic and dynamic models of the robot and the particular feedback devices are. 

Therefore, this set of generic modules should provide, first, a generic interface to access 
their specific functionality, second, a basic implementation, common to any platform, and, finally, 
the necessary communications between the different modules. 

All the high level control algorithms need information about the robot's kinematic and 
dynamic models, the motors controllers and/or the feedback devices, but due to the generic 
interface provided by each module, the control algorithm will be always the same.  

- II.3-2 -



International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 
             

Thus, given a set of generic modules, and in order to adapt the software to a specific 
platform, the only functions that are required to be implemented are those describing the robot's 
architecture and the ones that interface with the device drivers. Since all the basic control 
algorithms and inter-module communications are already implemented, the time needed to migrate 
from one platform to another is highly reduced. 
 
2.3 Distributed capability 

As the computational needs of some feedback devices increase, it becomes necessary to 
split the control application through several computers so as to keep performance and real-time 
control. Also, due to the absolutely different requirements for each application, the way the control 
software is splitted should be flexible enough to adapt to different configurations with little or no 
modification at all of the program. 

Given the generic modules introduced in the previous section, the easiest way to split the 
application is through these modules. Each of them may be local or remote to the users' computer. 
In the former case nothing has to be done since all the modules functionality is directly accessible 
through function calls. On the other hand, when a module is executing remotely in another 
computer several new features must be added to it. First of all, it is necessary to define a 
communication protocol to both, send the commands and parameters, and receive the operation 
results. It is required, also, to keep two different versions for each module: one working as a 
server, waiting for commands and actually carrying out the necessary actions, and the other 
working as a client, sending the commands and waiting for them to end. 

Finally, it's also necessary to define a communication device to handle the data transfer 
between the host and the client. To this end, the VCD explained in 2.1 can be used given the many 
different available possibilities: Ethernet in research environments, CAN bus in industrial 
environments or even pipes between processes in the same computer. 

A part from the great flexibility in designing distributed control systems, by using this 
approach, it is also possible to easily interface the application to a simulator in order to validate the 
control algorithms instead of trying them into the real platform. 

 
2.4. Real control 

Another design principle that must be taken into account is that most control applications 
must execute in real time [4]. This implies that none of the modules introduced so far can be 
blocked waiting for data or an event to take place. Since blocking is in general unavoidable due to 
the asynchronous nature of the events to wait for, and continuously polling is not efficient in terms 
of CPU usage, the use of multiple threads of execution becomes necessary. 

Although extremely powerful, multi-threaded applications introduce a lot of new problems 
such as thread synchronization, shared memory control and the thread handling itself. The use of 
such advanced programming techniques considerably increases the application complexity. In 
order to simplify the use of threads, it is necessary to define a new set of modules to handle the 
threads, the mutual exclusion methods and the logical events. 

In order to include the functionalities to create and handle multiple threads, as well as 
transparently handling the shared memory and the logical event notifications used for 
synchronization, each of the generic modules introduced in section 2.2 will have either to inherit or 
use the new defined thread modules. One of the main problems when using these features is that 
they are strongly dependent on the operating system used, issue that shall be addressed in the 
next section. 
 
2.5. Multi-platform 

Nowadays, both Windows and Linux operating systems (O.S.) are world wide used in most 
scientific and industrial environments. A control application that can run in any of these O.S. should 
be much more useful. There exist some programming languages specially designed to generate 
multi-platform applications but which are not generally suited for real time applications, since they 
are interpreted in run time and not compiled before execution (i.e. Java).  

Even though, considering the software framework presented so far, only few of the modules 
actually depend on the O.S. used. These are the VCD and those used to handle threads, shared 
memory and logical events. If the end user interface is based on a windowed graphical scheme, it 
will be also necessary to use a library which is independent from the underlying O.S. 

- II.3-3 -



International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 
             

Since the software framework core modules are platform independent, any application built 
on top of them will also be platform independent, and even more, the designer may use advanced 
programming techniques such as threads and logical events without having to worry about specific 
O.S. implementation issues. 
 
3. PROPOSED IMPLEMENTATION 

Yet quite powerful, the described approach is difficult to implement due to the high level of 
generality implicit in the development of the software framework core. In this section, a possible 
implementation is presented using an object oriented programming language (C++). Thus, each 
module is implemented as a class which inherits or use the necessary features from the other 
classes in the way presented in Fig. 1. 

Class CModule is the most important one since each of the generic modules inherit most of 
its functionality from it. To comply with the principle of section 2.3, it includes the necessary code to 
configure the module in order to be executed locally or remotely and to work as a client or server. 

For the case it is configured as a remote client, this class generates the needed commands, 
sends them through the VCD (implemented in the class CComm and waits for the answer. On the 
other hand, when configured as a remote server, this class waits for commands, executes any 
required action and returns the necessary data. CModule also inherits all the necessary features to 
handle multiple threads from the class CThread to comply with the principle of real-time control 
(section 2.4). Class CThread allows any derived class to handle multiple threads, to assign a 
different execution function to each of them and to end threads independently using a unique 
finalization event (implemented as a CEvent object). The CThread class also inherits from CMutex 
class to handle any shared memory issue. 

 

 
Figure 1: Class hierarchy for the software framework core. 

 
The VCD handles the incoming and outgoing data through circular queues implemented in 

CQueue. It also inherits from CThread to wait for new data in an independent thread to avoid 
blocking the main execution thread. When new data is received, executes a user defined function 
and/or stores the new data into the receive queue. This VCD may be used as the base class for 
any communication object, so it is only necessary to implement the way to open, configure, close, 
read from and write to the specific communication device (Ethernet, RS-232, etc.).  

As presented in section 2.2, the generic modules present are the robot module, the force and 
pose feedback modules and the motion and motor control modules, which correspond to the 
CRobot, CForceFeedBack, CPoseFeedBack, CMotionControl and CMotorControl classes 
respectively. Most of the interface functions on these classes are virtual or abstract allowing the 
derived classes to redefine or complete the basic implementation (polymorphism). 

In order to be able to execute the application in both Windows and Linux as introduced in 
section 2.5, all the O.S. dependent classes actually provide the implementation in both O.S., and 
only the corresponding part is compiled to generate the final application. These classes provide a 
unique interface to the other modules whatever the O.S. is. 

 

- II.3-4 -



International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 
             

4. ASSESMENT OF RESULTS 
The robot platform used to test the software framework presented in this paper consists of a 

3 degrees of freedom (dof) modified SCARA architecture robot1. As shown in Fig. 2, the designed 
manipulator has four joints, with the particularity that two of them have been attached together 
(joints labelled O and O` in Fig. 2 so the movement of point T in the figure is straight along axis x. 
The other two degrees of freedom are used to control the pan (joint T) and tilt (joint Q) of the end 
effector. The physical implementation is shown in Fig. 2. 

 

   
Figure 2: On the left, the top and lateral view of the robot architecture, on the right the 

physical implementation of the robot architecture. 
 
Three actuators are needed to move the robot articulations. Chosen devices have been DC 

motors with a planetary gear box including an incremental magnetic encoder in the motor shaft in 
order to feedback the axis position. Additionally, a 2 dof force sensor based on strain gauges has 
been fixed to the end effector of the manipulator. It allows measuring the force components that 
are transversal to the robot end effector. The whole system is completed with an external optical 
position feedback sensor based on a 2D Position Sensing Device (PSD). All the external devices 
(motor controllers and feedback devices) communicate with the computer using a unique serial 
link. A specific designed serial hub is used to handle the data packets in and out of each device. 

The software architecture used for this particular application is shown in Fig. 3. The classes 
CAgullaMotorControl and CAgullaMotionControl inherit directly from CMotorControl and 
CMotionControl respectively and they only extend the configuration functions of the base class to 
send the corresponding commands to the real controllers and define the main control functions. 

The pose and force feedback classes CAgullaPoseFeedBack and CAgullaForceFeedBack 
inherit from CPoseFeedBack and CForceFeedBack respectively. They implement the low level 
data acquisition functions. CAgulla inherits from CRobot and it just defines the kinematic and 
dynamic models of the robot described at the beginning of this section.  

 

 
Figure 3: Class hierarchy for the software application. 

 
Class CHub implements a VCD hub so any object derived from CComm may be used. It 

inherits from CThread to handle incoming data in any of the communication devices without 
blocking the main thread. In this case two communication devices are used, CCom to send and 
                                                 
1 The robot, named Agulla, has completely been designed and built in the IRI under the research grant CeRTAP (Ref. 
I00544). 

- II.3-5 -



International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 
             

receive data from the low level hardware and CPipe to exchange data between the application 
modules. Both CPipe and CCom, just implement the low level physical access to the 
communication devices. Another communication class is used to split the application through 
several computers using a Local Area Network (CSocket) to test the distributed capability. 

By using the base framework introduced in section 3 to design a software application for this 
particular platform, it has been possible to develop a control software using external position and 
force feedback in a short time. The only modules that were necessary to be implemented were the 
kinematic and dynamic models of the robot, adapting the motor control and feedback modules to 
the characteristics of the particular device drivers and the way those modules interface to the 
hardware through the serial hub (CHub). 

Finally, it has been possible to split the control application through several computers using 
the distributed capability principle, in which the software framework is based, with minimum 
modification of the source code. For every remote module it was only necessary to assign a 
communication device (CSocket) and create a main program which generates the corresponding 
part of the control application for each computer.  
 
5. CONCLUSIONS AND FUTURE WORK 

Given a robotic arm we want to control it in order to solve a task. The control software should 
be general for any kind of robot arm and set of sensors. This paper introduces a set of design 
principles which seek to reduce robotic applications design and implementation time so reducing 
the errors present in any practical implementation as well. Then, a possible implementation of the 
general software framework proposed in section 2 is developed. Experiments show that the 
solution presented in this paper, although its limitations, allow the robotic applications designer to 
save development time while keeping the overall complexity low. Although the control algorithms 
always worked, due to the bandwidth requirements of some modules (i.e. motor control), the 
performance achieved for some configurations is severely limited. There exists open-source 
applications which handle similar problems [7,8] but they are not well fitted for small control 
applications like the one presented in section 4 due to the high complexity involved.  

We have learnt that because of limitations in the programming language used to develop the 
application, some of the design principles presented in section 2 can not be completely fulfilled, 
and the final application itself is highly sensitive to implementation issues. Also, to completely verify 
the design principles it would be necessary to evaluate the effort required to design a control 
application for multiple and heterogeneous platforms. 
 
REFERENCES 
[1] F. Buschmann, Rational architectures for object-oriented software systems, Journal of Object-
oriented programming, pp 30-41, 1993. 
[2] P.Dario, R. Dillman, H.I. Christensen, Euron Roadmap document, 2005 
[3] Hirzinger, G.; Sporer, N.; Schedl, M.; Butterfass, J.; Grebenstein, M, Robotics and mechatronics 
in aerospace, 7th International Workshop on Advanced Motion Control, 2002. 
[4] Y. Kuo, A distributed real-time framework for robotics applications, Master's Thesis, Univeristy 
of Auckland, Submitted 2004. 
[5] B. Meyer, Object-oriented software construction, Prentice-Hall, 1997. 
[6]I.A.D. Nesnas, Toward developing reusable software components for robotic applications, 
Technical report JPL, 2001. 
[7] ORCA, http://www.orca-robotics.sourceforge.net/, 2004. 
[8] OROCOS, Open Robot Control software Open Robot Control Services, http://www.orocos.org. 
 

ABOUT THE AUTHORS 
Sergi Hernandez Juan, PhD student, Institut de Robòtica i Informàtica Industrial (IRI), Spain, 
Phone: +34 93 401 57 91, Е-mail: shernand@iri.upc.es. 
Josep M. Mirats Tur, post-doc researcher, Institut de Robòtica i Informàtica Industrial (IRI), 
Spain, Phone: +34 93 401 07 75, Е-mail: jmirats@iri.upc.es. 
 

- II.3-6 -


