
International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 

 
             

 
Transferring online formatted HTML layouts into Flash and PDF 

 
Nikolaj Cholakov 

 
Abstract: This paper presents an approach and a realisation based on PHP and JavaScript for online 

generation of HTML text layouts transferred into Flash movies and PDF documents. This system can be 
useful for sites using content management systems (CMS) to maintain various information fields presented 
to the client by Flash movies. Once constructed with the editor, the text layout is automatically transformed to 
a Flash-compatible form and inserted into the CMS database. Along with that a PDF file representing the 
same layout in printable form is generated. 

Key words: HTML formatting, Command identifiers, Flash, PDF. 
 
INTRODUCTION 
The content management system (CMS) is one of the most important aspects of the 

overall design of a modern web site, no matter if this is a personal web site, a site for a 
medium sized business, or a common portal. It is especially important when the site will 
constantly have new products, company news or different articles added to it, which is the 
case for most of the commercial sites and information portals. The newly added content 
could be left unformatted, but this is not the preferred solution. So the person from the 
company who will be adding that content must have much more than beginner’s knowled-
ge of HTML. Another possibility is to offer some form of offline template that the operator 
can edit and upload, but this is neither time effective nor streamlined. A very good issue 
here would be to provide the CMS operator with a browser based WYSIWYG text editor 
and formatter not requiring HTML skills from the user.   

On the other side, presenting the information fields to the client using Flash becomes 
more and more popular. Textual components in Flash support some of the HTML and CSS 
formatting capabilities, so the information field’s layout can be transferred intact into Flash. 
It is also a good idea to offer a printable version for each information field, and the PDF 
document format is perfect for that purpose.  

 
LAYOUT  
The solution of the above-formulated problem can be achieved in three steps: first, to 

build an online WYSIWYG text editor capable of editing and formatting text using only 
HTML tags; second, to keep the text layout generated by the editor, and to import this 
layout into Flash textual components; third, to generate a separate PDF document for 
each layout, still keeping the formatting intact. These tasks must be done by the CMS sys-
tem automatically, without an intervention from the operator, who should only provide the 
text and construct its layout using the online editor. 

 
 1. Building the online HTML editor 
 
The online text editing and formatting can be easily done with the capabilities provi-

ded by the JavaScript method execCommand() [3]. This method is used to execute a com-
mand on a document. In the sense of execCommand(), a command is a pre-defined set of 
functions that can manipulate the page layout, insert an image, link, list, text box, horizon-
tal rule, etc right into an HTML document in the browser. Each command has its own 
command identifier, instructing the execCommand() method what to do over a selected 
part of the document. Almost all text formatting which offers FrontPage for example, can 
be done in the browser using the command identifiers. At this time the execCommand() 
method and the command identifiers are not a World Wide Web Consortium (W3C) stan-
dard, but they are supported by Internet Explorer and Mozilla Firefox – the most popular 
browsers for Windows and Linux. 

- II.2-1 -



International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 

Command identifiers can be applied not only on the whole HTML document, but also 
on a part of a document, put in an <iframe> tag. This inline frame can be used as a 
content pane for the online editor, by setting the “designerMode” attribute of the iframe to 
“on” and putting the text which is to be formatted into it.  

The text which is to be formatted comes from the database of the content manage-
ment system. The CMS operator can activate the editor by clicking on a link called “Format 
text” and placed nearby each information field. The link activates a PHP function, which 
generates the editor’s layout, pops up a new browser window and renders the editor 
inside. At the same time the PHP function extracts the text for the corresponding field from 
the database and loads it into the editor. The text layout can also be built from scratch – by 
entering the text directly into the editor pane or by copying it from an external file. 

Each formatting command, supported by the editor, is presented in the interface by 
an image or a dropdown box. When the user selects a command, a JavaScript function is 
called. This function passes the corresponding command identifier to the execCommand() 
method, which immediately changes the text layout. As an example here is the code of the 
makeBold() function, which is called to make the selected text bold, by means of a referen-
ce to the execCommand() with the “bold” command identifier :  

 
function makeBold(){ 
   document.getElementById('iEditor').contentWindow.document.execCommand( 
                                                   'bold', false, null);"; 

     }  
 

In this call “iEditor” is the “id” attribute of the editor’s <iframe> tag. Functions ana-
logous to makeBold() are provided for each formatting operation, and they all perform a 
call to ececCommand() with the corresponding command identifier as an attribute.  

Figure 1 shows the overall look of the editor with some text formatted using the edi-
tor’s capabilities: 

 

 
 

Figure1. The online HTML editor 
 

If the user had selected some text in the editor’s pane, then only that text's formatting 
will change. If the user hasn’t selected any text, then any text that he types in after apply-
ing the new formatting command will appear with the new properties. 

 
             

- II.2-2 -



International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 

 
             

Each formatting action performed by execCommand() inserts automatically into the 
text all necessary HTML formatting tags. When all desired formatting is done, the content 
of the editor’s pane is saved back in the database, and the text comes along with the 
HTML formatting tags. Afterwards the contents of each field can be re-edited, in this case 
the editor shows the existing text layout correctly, and it can be changed again and again.    

 
2. Importing the HTML layout into Flash 
 
Flash supports HTML formatting tags, so if the text which is to be loaded into a text 

component comes along with the HTML formatting tags in it, the layout will be rendered 
automatically [4]. There are some compatibility problems however, and they must be 
eliminated before the text is loaded into the Flash [2], [6]. First, Flash supports only several 
HTML tags <b>, <i>, <u>, <p>, <br>, <font>, <a> and <span>. For this reason some 
capabilities of the command identifiers, like block indent and outdent cannot be directly 
applied in Flash. Second, there are differences between the tags used by the command 
identifiers and the tags supported by Flash: for example to make the text bold, the “bold” 
command identifier uses the <em> tag, while Flash supports only the <b> tag. Third, Flash 
requires all tag attributes to be quoted, for example <p align=”center”>, while command 
identifiers do not use quotes. 

On the other side, Flash supports several CSS properties [7], which can be used to 
replace the missing support for some HTML tags. Table 1 summarizes all the tags, used 
by the command identifiers, and also the corresponding elements which can be used in 
Flash and in the PDF converter HTMLDOC to keep the imported text layout intact.  

 
Table 1. Comparison of text formatting elements supported by 

 Command Identifiers, Flash and HTMLDOC  
 

Tag supported by 
Command Identifiers 

Tag supported by 
Flash 

Tag supported by 
HTMLDOC 

<STRONG> <B> <B> 

<EM> <I> <I> 

<U> <U> <U> 

<BLOCKQUOTE> <SPAN class=”indent”> <BLOCKQUOTE> 

<FONT face=”face”> <SPAN class=”face”> <FONT face=”face”> 

<FONT size=”face”> <SPAN class=”size”> <FONT size=”face”> 

<FONT color=”color”> <SPAN class=”color”> <FONT color=”color”> 

<P align=”align”> <P align=”align”> <DIV align=”align”> 

<A> <A> <A> 

 
Because Flash does not support <strong>, <em>, and <blockquote> tags they must 

be replaced. The <font> tag is supported by Flash, but replacing it with a <span> tag with 
a stylesheet-defined class increases the flexibility of the system. The <font> tag supports 
only 7 fixed font sizes, while by defining a variety of stylesheets which are to be applied in 
different Flash presentations the set of font sizes can be unlimited. For the same reason 
<font> tags with “face” or “color” attributes are replaced by <span> tags having different 
classes. These replacements also concern the case when the <font> tag has more than 

- II.2-3 -



International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 

one attribute, for example <font face=”arial” color=”green”>. 
The layout of all fields must be kept in the database in Flash-compatible format, 

because Flash gets the content of each field directly from the database. Therefore the 
conversion from command identifiers to Flash-compatible layout must be done before the 
edited field is inserted back into the database. So the PHP function which updates the 
field, parses the content of the editor’s pane, makes all necessary replacements and then 
updates the field in the database. This means however that if a field, which already has 
been formatted, is to be reloaded back into editor, a backward conversion from Flash to 
command identifiers must be performed. This conversion is done by the PHP function loa-
ding the text into the editor.  

 
3. Generating PDF documents preserving the HTML text layout 
 
The conversion from HTML to PDF format can be done programmatically using PHP, 

Pearl or some other popular language. However this is not a simple task [1]. There are 
many ready-made tools offering conversion of HTML documents to PDF format. The PDF 
writers are not considered here, because they require user intervention and the purpose of 
this system is the fully automated PDF documents generation.  

During the system development many converters were tested, starting from open-
source free ones, up to these requiring 500 Euro licence per server. Finding a good solu-
tion proved to be a difficult task. Most of these tools lack Linux support, which is a serious 
disadvantage. Some of them (mostly open-source) showed strange bugs and proved to be 
unusable.  

Finally the tool called HTMLDOC [5] was chosen because of the following capabili-
ties: Windows and Linux versions, command-line interface, support for all HTML tags, bug-
free performance. 

Although HTMLDOC supports all HTML tags, there are some peculiarities in the PDF 
layout constructing algorithm which make another conversion obligatory: from the Flash-
compatible format stored in the database, to a format, allowing the HTMLDOC tool to pre-
serve the text layout intact in the resulting PDF document. The differences between these 
two formats are summarized in Table 1. 

HTMLDOC has a graphical interface, but can also be used from the command line. 
This allows the fully automatic usage of this tool from the CMS operator’s point of view. 
The tool is called by a PHP function using the following command line: 

 
htmldoc -f outfile.pdf -t pdf14 --charset cp-1252 –webpage infile.html 
 
Here “infile.html” is the name of a temporary created HTML file containing the layout 

which is to be converted, and “outfile.pdf” is the resulting PDF file.  
On Figure 2 the whole layout transferring mechanism is graphically presented: 

 
             

 
Figure 2. Overall layout transferring mechanism 

Flash

 PDFHTMLDOC 

Raw   
text 

HTML 
editor 

Raw   
text 

Conform to Flash 

Conform to HTML 

CMS 
database 

- II.2-4 -



International Conference on Computer Systems and Technologies - CompSysTech’06 
 
 

 

 
             

 
The raw text is provided by the CMS operator directly to the editor, or prior to the text 

formatting, using the standard CMS interface. The CMS operator can associate the HTML 
editor to each desired database field. After that at any time the field’s text can be loaded 
into the online editor and quickly formatted; then the produced layout is converted to the 
Flash-compatible format and saved into the CMS database. The editing procedure can be 
repeated as many times as needed. When the text is loaded from the database, it is 
converted from the Flash-compatible form back to the original HTML format, produced by 
the HTML editor. Then after the newly applied formatting operators the text is saved again 
into the database along with its new layout.  

Each time when a database update operation is performed, the PDF converter is 
automatically called. Thus all changes made to the content or to the layout of a field are 
immediately reflected in the corresponding PDF file. 

The layouts saved into the CMS database along with the generated PDF files can be 
directly used by Flash movies. In principle the idea is that the Flash movie should present 
each information field with the corresponding format in a text component, and nearby 
should stay a link to the PDF version, but of course this is not obligatory – the flash desig-
ner can utilize all fields the way he desires.  

 
CONCLUSIONS AND FUTURE WORK 
The online layout formatting and transferring system described above is a fully opera-

tional, in-browser editing system capable of building and formatting HTML contents on the 
fly, followed by automatic transferring of the issued layout into Flash and PDF documents. 
The practical application of this system can intensify and simplify the exploitation of con-
tent management systems using tools for formatted presentation of textual information. 
The realization is entirely based on PHP and JavaScript, it is fully independent and can be 
attached to every PHP-enabled system as an external module. 

The ideas for the future development of the system are basically pointed at extending 
the CSS support to take advantage of all possible Flash and PDF capabilities. In fact the 
capabilities of the system as a whole are determined by the limited set of functions, sup-
ported by the command identifiers. More diversе results could be achieved with the usage 
of a suitable set of predefined styles. 

 
REFERENCES 
[1] Steward, S. PDF Hacks. Cambridge, O’Reilly, 2004 
[2] Yeung, R. Macromedia Flash MX 2004 Hands-On Training. Berkeley, New Riders, 

2004. 
[3] Http://msdn.microsoft.com/library/default.asp?url=  
            /workshop/author/dhtml/reference/commandids.asp 
[4] Http://visualintensity.com/flash-tutorials/mx2004/textarea-load/ 
[5] Http://www.easysw.com/htmldoc/ 
[6] Http://www.macromedia.com/cfusion/knowledgebase/index.cfm?id=tn_14808 
[7] Http://www.whatdoiknow.org/archives/001181.shtml 
 
 
ABOUT THE AUTHOR 
Nikolaj Ivanov Cholakov, PhD, Department of Information technologies, University of 

Veliko Turnovo, Phone: +359 62 649831, Е-mail: n.cholakov@uni-vt.bg. 

- II.2-5 -


