
International Conference on Computer Systems and Technologies - CompSysTech’06

Parallel Combinatorial Search on Computer Cluster:

Sam Loyd’s Puzzle

Plamenka Borovska

Abstract: The paper investigates the efficiency of parallel branch-and-bound search on multicomputer
cluster for the case of parallel solving Sam Loyd’s puzzle. Performance estimation and analysis as well as
parallelism profiling have been made for MPI implementation developed on the basis of the
manager/workers parallel algorithmic paradigm. The impact of the number of the processors and the
computational workload – the board size – over the performance of the parallel system has been
investigated.

Key words: Combinatorial Search, Parallel Branch and Bound, Cluster Computing, Parallelism
Profiling, MPI Programming, Manager/Workers Algorithmic Paradigm, Distributed Load Balancing.

INTRODUCTION
The increasing demands of greater and available computing power set up a steady

modern tendency of constructing computer clusters [1]. The idea of clustering the available
computing resources within one ore more buildings and utilizing them as a single
computing resource is very attractive and gives the opportunity to solve time-consuming
applications in reasonable time [2]. The easiest way to acquire considerable computing
power is to construct a slack cluster of multicomputer architecture, integrating the available
computers and use the message passing programming model [3]. In order to increase the
level of the exploited parallelism in the case of heterogeneous computer platforms we can
combine the flat programming model with multithreading to achieve greater speedup [4].

One of the application areas demanding greater computational power and consuming
great computational time is combinatorial search [5]. Combinatorial search is the process
of finding “one or more optimal or suboptimal solutions in a defined problem space” [6] and
has been used for minimizing the layout of VLSI circuits, for minimizing the traveled
distance in robot’s motion, proving theorems and playing games. An algorithm that solves
an optimization problem must find a solution that is an extreme of an objective function.

This paper investigates the opportunities and possible advantages of parallel
combinatorial search on a cluster of computers. The specific problem under investigation
is solving in parallel Sam Loyd’s puzzle which is an example of the branch-and-bound
search technique and may be used as a benchmark for estimating the performance of
parallel systems in combinatorial search efficiency. Furthermore, the goal is to explore the
correspondence of parallel architectural and algorithmic spaces for combinatorial search
problems.

THE PROBLEM OF SOLVING SAM LOYD’S PUZZLE
The well-known 15-puzzle invented by Sam Loyd [7] consists of 15 tiles, numbered 1

to 15, arranged on a 4x4 board. Fifteen locations contain exactly one tile. The sixteenth
location is empty. The goal of the puzzle is to repeatedly fill the hole with a tile adjacent to
it in the horizontal or vertical direction until the tiles are in row-major order until the tiles are
correctly ordered. From our point of view this is an optimization problem – the aim is to
solve the puzzle in the least number of moves.

Search problems are represented by state space trees. This state space tree
presents the board positions that can be reached from the initial position. Taking into
consideration that the goal is to examine as few alternative moves as possible it is a good
idea to associate a weight with each state, denoting the minimum number of tile moves
made so far needed to solve the puzzle. The weight function adds the number of tile
moves made so far to the Manhattan distance between each out-of-place tile and its

- II.15-1 -

International Conference on Computer Systems and Technologies - CompSysTech’06

correct location. The Manhattan distance between two points is the shortest path between
these points in case all movements should be in horizontal or vertical directions only.

We consider the case of applying the branch-and-bound technique of search where
the initial problem is decomposed into a set of two or more problems of smaller size. The
decomposition process is repeated recursively until each unexamined problem is
decomposed, solved, or proven that it does not lead to an optimal solution of the original
problem. The objective function in the case is the number of moves necessary to order the
tiles. Part of the state space tree for solving the 15-puzzle of Sam Loyd by the best-first
branch-and-bound search is shown in Fig.1. Obviously, the state space tree is highly
unbalanced and, therefore, the parallel solution will require some load balancing in order to
achieve good speedup.

Fig.1. Part of the state space tree (3 levels) for solving the 15-puzzle of Sam Loyd
by branch-and-bound search.

In Fig.1 each node of the graph is denoted by the value of the objective function

which is a lower bounding function for each subproblem and is formed by the sum of the
Manhattan distance and the moves made so far for the particular pattern of tiles. To the
right of each node is denoted the consecutive number of the search level. In Fig.2 the
computational model for solving the 15-puzzle of Sam Loyd by branch-and-bound search
for depth up to three levels is shown. In the worst case, the lower bound function causes
the algorithm to perform a breadth-first search of the state space tree without pruning.
Consider the case when the optimal solution is found at level k of the state space tree with
an average branching factor b, the worst case time complexity of best-first branch-and-
bound search is O(bk). In that case, the priority queue containing all unexamined
subproblems, inserts, on average, b nodes in the place of each node being removed.

THE PARALLEL VERSION OF THE SOLUTION
For the parallel solution of the problem the algorithmic paradigm “manager/workers”

is applied. The manager process is responsible for the following activities: initializes the
primary configuration of tiles on the board, generates the original problem with the
corresponding priority queue, divides the original problem into two subproblems,
distributes the unexamined problems to worker processes, sends termination token
according to the requirements of the modified Dijkstra’s distributed termination detection
algorithm to worker processes in ring-like order, performs checks to identify the termination
of the parallel algorithm, if it gets a white token and the message count is 0, sends a
termination message to the worker processes. Each process maintains its own priority
queue of unexamined subproblems. The worker processes initially have empty priority
queues expecting messages from other processes with unexamined subproblems. They
receive messages, containing the termination token. The format of the termination token is
shown in Fig.3. In case a process receives a message and computes an unexamined
problem with a lower bound less than that of the best solution found so far, it updates the
color and the count fields, and the field containing the best solution so far. At last, the
process compares the cost of the best solution found so far with the lower bound of the

- II.15-2 -

International Conference on Computer Systems and Technologies - CompSysTech’06

unexamined subproblem at the head of its priority queue. In case the cost of the current
best solution is lower or equal to the lower bound of the head unexamined problem, the
process empties its priority queue.

Fig.2. The computational model for solving the 15-puzzle of Sam Loyd
by branch-and-bound search – depth up to three levels.

Fig.3. The format of the termination token.
The parallel computational model is shown in Fig.4. It provides opportunities for

distributed load balancing at run time during the parallel branch and bound search.

- II.15-3 -

International Conference on Computer Systems and Technologies - CompSysTech’06

Furthermore, the ring-like passing of the termination token ensures that useless
computation shall not be performed for the solutions that cannot lead to better than the
current best solution.

Fig. 4. The parallel computational model.

PERFORMANCE ESTIMATION AND PARALLELISM PROFILING
The experimental parallel computer platform comprised five workstations (Intel

Pentium 4 1.5 GHz, RAM 256MB, Windows XP) interconnected by switch 100 Mbps. The
message passing programming model was applied and MPI implementation of the parallel
branch and bound search for solving Sam Loyd’s puzzle was run for the cases of board
sizes 4x4, 5x5 and 7x7. The speedup is calculated taking into account time for sequential
processing on one workstation with centralized priority queue. The diagrams presenting
the speedup and the efficiency as a function of the numbers of processors are shown in
Fig. 5 and Fig.6, respectively.

0

0,2
0,4

0,6

0,8
1

1,2
1,4

1,6

1,8

sp
ee

du
p

1 2 3 4 5

number of processors

SPEEDUP OF THE PARALLEL SOLUTION OF
LOYD'S PUZZLE

board size 4x4 board size 5x5 board size 7x7

1 2 3 4 5

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ef
fic

ie
nc

y

number of processors

EFFICIENCY OF THE PARALLEL SOLUTION OF
LOYD'S PUZZLE

board size 4x4 board size 5x5 board size 7x7

Fig.5. The speedup obtained. Fig. 6. The efficiency obtained.

- II.15-4 -

International Conference on Computer Systems and Technologies - CompSysTech’06

The dynamics of the communication transactions of the MPI implementation of
parallel branch-and-bound search for solving Loyd’s puzzle is shown in Fig.7. Gantt’s chart
presenting the states of the processes is shown in Fig.8.

Fig.7. The communication transactions of processes in the MPI implementation.

Fig. 8. Gantt’s chart.

- II.15-5 -

International Conference on Computer Systems and Technologies - CompSysTech’06

CONCLUSIONS AND FUTURE WORK
Performance analysis shows that the obtained speedup is the highest for the largest

board size 7x7 because of the fact that increasing the board size means increasing the
computational workload and consequently, better utilization of the computational
resources. Nevertheless, the speedup is about 1.7 for 5 processors meaning the efficiency
is about 35%. We see that the less the number of processors, the better the efficiency
because of the better utilization of processors and the decreased communication
overhead.

In order to improve the performance a more effective method for dynamic load
balancing should be introduced. Whenever a process has an unexamined problem to send
to another process it should have some system information about the parallel workload
distribution within the parallel computer platform so that it can identify the process it is
going to sent the newly generated workload. The length of the local priority queue can be
used as a measure for the current workload of a process. A possible candidate for the
parallel workload balancing is the gradient method and if it is applied, the additional
incurred communication overhead should be considered.

The parallel computation of Sam Loyd’s puzzle can be used as a benchmark for
estimating the performance of parallel computer platforms for applications requiring
combinatorial search.

The future work should involve investigating the performance of the parallel system in
the cases of multithreading and hybrid programming models as well.

REFERENCES
[1] Hennesy J., D. Patterson, Computer Architecture, A Quantative Approach, 3rd

Edition, Morgan Kaufmann Pubishers, San Francisco, 2003
 [2] Wilkinson B., M. Allen, Parallel Programming: Techiques and Applications Using

Networked Workstations and Parallel Computers, Upper Saddle River, New Jersey,
Prentice Hall, 1999.

[3] www.clustercomp.org
[4] Quinn M., Parallel Programming in C with MPI and OpenMP, McGraw Hill Higher

Education, International Edition, 2003.
[5] Grama A., A.Gupta, G.Kapyris, V.Kumar, Introduction to Parallel Computing,

Second Edition, PEARSON, Addison Wesley, 2003.
[6] William G., E. Lusk, A. Skjellum. Using MPI Portable Parallel Programming with

the Message-Passing Interface, MIT press, Cambridge, Massachusetts, London, England,
second edition, 1999.

[7] Koip P., Parallel Algorithms for Combinatorial Search Problems, University of
Massachusetts, 2005.

ABOUT THE AUTHOR
Assoc. Prof. Plamenka Borovska, PhD, Head of Computer Systems Department,

Technical University of Sofia, Phone: +359 2 965 2524, Е-mail: pborovska@tu-sofia.bg.

- II.15-6 -

