
International Conference on Computer Systems and Technologies - CompSysTech’06

An Approach to Reducing the Number of Instructions for Conditional

Branches in FPGA Based 8 bit RISC SMCore Microcontroller

Ivan Kanev

Abstract. This article presents an approach to reducing the number of instructions that organize
conditional branches in designing a FPGA-based 8-bit RISC SMCore microcontroller. The logical conditions
for setting the flags of the status register are defined. A method for organizing all conditional branches with
only two instructions is offered, the architectural features of the microcontroller being considered. The
components realizing the “Skip” mechanism in VHDL are shown.

Keywords: Conditional, Branch, FPGA, VHDL, Reduced, Instruction, Set, 8 bit, Microcontroller,

SMCore.

1. INTRODUCTION

Organizing conditional branches plays an important role in the designing of 8-bit

FPGA-based microcontrollers. Many of the existing general purpose microcontrollers
either partially solve this problem [1] or use multiple instructions [2], [3]. This is due to the
desire of general purpose single chip microcontroller manufacturers to ensure
programming and architectural inheritance in developing their sophisticated families.

The design of mechanisms and instructions for conditional branches in FPGA-based
systems with limited resources and reduced instruction sets may happen to require a
number of instructions comparable to the number of all other instructions in the set.

The research conducted in this article refers to an 8-bit RISC SMCore microcontroller
[4] and aims at:

• To examine the logical conditions for setting the flags of the status register and

the possibilities for organizing branches with operations on signed or unsigned
operands.

• To offer a method allowing the reduction of the number of instructions for

conditional branches, having made an analysis of the conditions for branches.

• To offer suitable mechanisms and instructions for organizing conditional
branches in VHDL.

2. ARCHITECTURAL FEATURE OF THE 8-BIT RISC SMCore
MICROCONTROLLER

The main blocks and components that form the architectural model of the SMCore

microcontroller are shown in fig. 1.
The microcontroller is based on the Harvard architecture and has the following most

important features:
1.All system, input/output registers and general purpose registers are eight bits long

and are unified in a single 256-byte File Register (FR).
For the purpose of this research, we assume that the accumulator “A” and the status

register (SR) are integrated into the system registers, on certain addresses in the FR. The
output of the accumulator form the Acc bus. The bits of the SR, also called flags, are set
in accordance to the results of a certain operation:

- I.1-1 -

International Conference on Computer Systems and Technologies - CompSysTech’06

Fig. 1. SMCore – architectural model

Carry-Borrow; Zero; Overflow; Negative i.e. The SR flags are used in organizing a large
number of conditional branches in the microcontroller. The output of the Carry-Borrow flag
forms the Cin signal, which is used in addition or subtraction, taking into account the
results of previous arithmetic operations.

The outputs of the FR registers are multiplexed by DOUT_MUX and form the DOUT
bus.

2. Every instruction is coded in the program memory (PM) of the microcontroller in a

single 16-bit program word. The instructions are fetched from the PM by a 9-bit program
counter (PC). The PC can be extended up to 14 bits. The current instruction is stored in
the instruction register (IR). The operation code (OPC) of the instructions is decoded in the
Control Unit. This Unit generates all signals controlling the microcontroller.

Based on the addressing modes used, the operands of the current instruction can be
transported to the other units by three buses: IMM, when immediate addressing is used;
AbsorOffset, when absolute or relative addressing is used; FR_Addr, when register -
register is used.

3. All arithmetic, logical, bit and transitive operations are realized in the ALU. The

outputs of the ALU components are multiplexed by DIN_MUX and form the Din bus. Fig.1
only shows the part of the ALU that is related to the problems of forming the logical
conditions for setting the SR flags.

- I.1-2 -

International Conference on Computer Systems and Technologies - CompSysTech’06

3. LOGICAL CONDITIONS FOR SETTING STATUS REGISTER FLAGS
We use the following notation:

m – order of the operands of the microcontroller;
ba, – input ALU registers;

y – output of the addition/subtraction component;
Din – ALU output.
⇒ – branch;

Then the Status Register flags are set with the following logical functions [4]:
• Zero results of operations with signed or unsigned operands:

iDin
m

i
Z

1

0

−

=
∧= . (1)

• Negative result of operations with signed operands
1−= mDinN (2)

• Carry or Borrow resulting from arithmetic operations with unsigned operands:
- addition,

1.11.11.1 −−∨−−∨−−= mymbmymambmaC ; (3)
- subtraction,

1.11.11.1 −−∨−−∨−−= mymbmymambmaC . (4)
If the current operand is contained within the “b” register:

- left shift/left rotation,
1−= mbC (5)

- right shift/right rotation
0bC = (6)

• Arithmetic overflow resulting from arithmetic operations with signed operands:
- addition,

 1.1.11.1.1 −−−∨−−−= mymbmamymbmaV ; (7)
- subtraction,

 1.1.11.1.1 −−−∨−−−= mymbmamymbmaV . (8)
 The C, Z, V, N flags can realize eight conditional branches.

 ; (9)
⎭
⎬
⎫

⎩
⎨
⎧

⇒
⇒

=
Carry
Not Carry

C
1
0

 ; (10)
⎭
⎬
⎫

⎩
⎨
⎧

⇒
⇒

=
Zero

ZeroNot
Z

1
 0

 ; (11)
⎭
⎬
⎫

⎩
⎨
⎧

⇒
⇒

=
Overflow

OverflowNot
V

 1
 0

 . (12)
⎭
⎬
⎫

⎩
⎨
⎧

⇒
⇒

=
Negative
Positive

N
1
0

- I.1-3 -

International Conference on Computer Systems and Technologies - CompSysTech’06

Let’s assume a, b are unsigned operands and the following operation is performed

SUBUSG → a-b. Then, referring to (1), (4) we can define the conditions for the branches
and the concrete values of the flags C and Z after the SUBUSG operation is performed:

 ;0 ,1 === CZthenbaif
 ;0 ,0 ==> CZthenbaif
 ;0 ,1 ==≥ CZthenbaif
 ;1 ,0 ==< CZthenbaif
 .1 ,1 ==≤ CZthenbaif

The C and Z flags can realize six conditional branches:

 ; (13)
⎭
⎬
⎫

⎩
⎨
⎧

⇒
⇒

=
LessThan

 EquaGreater or
C

 1
l 0

 ; (14)
⎭
⎬
⎫

⎩
⎨
⎧

⇒
⇒

=
Equal to

toNot Equal
Z

 1
 0

 . (15)
⎭
⎬
⎫

⎩
⎨
⎧

⇒
⇒

=∨
ualLess or Eq
anGreater Th

ZC
 1
 0

Let’s now assume that a and b are signed operands and the following operation is

performed SUBSG →a-b. Then, referring to (1), (2), (8) we can define the conditions for the
branches and the values of the Z, N, V flags after the SUBSG operation is performed. We
can substitute the concrete values of N and V with the VN ⊕ function, which is zero if

: ba ≥
While defining the conditions for the branches after the SUBSG operation, we can

omit the ones, where and , because the Z flag does not depend on the sign of
the operand (1).

ba = ba ≠

0 ,1 =⊕=≥ VNZthenbaif
0 ,0 =⊕=> VNZthenbaif
1 ,0 =⊕=< VNZthenbaif
1 ,1 =⊕=≤ VNZthenbaif

We can realize four conditional branches with the Z, N and V flags.
If:

 ; (16)
⎭
⎬
⎫

⎩
⎨
⎧

⇒
⇒

=⊕
Less Than

 EqualGreater or
VN

 1
 0

 . (17)
⎭
⎬
⎫

⎩
⎨
⎧

⇒
⇒

=⊕∨
ualLess or Eq
anGreater Th

VNZ
 1

0
)(

- I.1-4 -

International Conference on Computer Systems and Technologies - CompSysTech’06

2. Prerequisites for reduction of the number of instructions for conditional

branches

Based on the analysis of the conditions

for organizing conditional branches, the
following conclusions can be drawn:

1. We can organize 18 branches with the
C, Z, V and N flags using signed or
unsigned operands.

2. Branches (9) and (10) can be
combined with branches (14) and (15)
respectively as they use the same flags.

3. Twelve branches can be organized by
checking only one flag. In order to
organize the other six branches,
conditions formed as logical functions
(15), (16), (17) containing the C, Z, V, N
flags will have to be checked.

The idea of reducing the number of

instructions for conditional branches is based
on the assumption that all branches can be
organized by checking only one of the Status Register flags for every branch. In this case,
the number of instructions for organizing conditional branches can be reduced to two
instructions checking the SR flags as bit operands.

Table 1. Status Register -
configuration, flags, branches.

Flags Branches
0 Carry Clear; (Greater or Equal)usg0 C
1 Carry Set; (Less Than)usg
0 Not Zero;(Not Equal to)usg or sg1 Z
1 Zero, (Equal to) usg or sg
0 Not Overflow 2 V
1 Overflow
0 Positive 3 N
1 Negative
0 (Greater Than) usg4 CF0
1 (Less or Equal) usg
0 (Greater or Equal) sg

5 CF1
1 (Less Than) sg
0 (Greater Than) sg6 CF2
1 (Less or Equal) sg

7 ---

Let’s assume that the SR flags are divided into two groups – base flags and complex
flags, where:

• Base flags are the ones which can be used to organize conditional branches

checking only one of the C, Z, V and N flags.

• Complex flags are those set by logical functions including two or more base flags:

 ; (18) ZCCF ∨=0

 ; (19) VNCF ⊕=1

 . (20))(2 VNZCF ⊕∨=

Then, if the base and complex flags are integrated in a single status register, the
efforts to organize conditional branches can be reduced to checking bit operands.

An example configuration of a status register containing base and complex flags is
shown in Table 1. The branches that can be organized after the SUBUSG and SUBSG
operations are denoted in brackets.

- I.1-5 -

International Conference on Computer Systems and Technologies - CompSysTech’06

5. SKIP MECHANISMS AND INSTRUCTIONS FOR ORGANIZING CONDITIONAL

BRANCHES
For the architectural model chosen, we assume that every instruction is coded in the

program memory in a single 16-bit program word. Then, the form of instruction coding
proves to be significant for the choice of mechanisms for organizing conditional branches.
Let’s assume the following notations:

cbOPC – code of the operations for conditional branches;
>< Rn – operand: address of register n from the FR, n = 0..255;

>< Bit# – immediate operand: number of the bit of Rn (#Bit = 0..7);
>< rBranch Add – operand: address of the branch

)(Re g – register content
← – data transfer

In order to organize conditional branches on bit operands on all Rn registers, the

instructions for conditional branches have to be encoded in the following way:
><><>< AddrBranch, #Bit, RnOPCcb (21)

Taking into account the number of combinations needed to encode the operations of
the instruction set and the fact that <#Bit> has to be indicated when checking bit operands,
it is obvious that the form (21) cannot be realized in a single 16-bit program word.

Therefore, mechanisms allowing indirect coding of one of the operands
 and have to be chosen, using the concrete architectural model. A

proper solution for indirect coding of
>< rBranch Add >< Rn

>< rBranch Add is the Skip mechanism.

Fig.2. Format of the Skip instructions

Let’s assume the instruction for conditional
branch has been fetched from program memory
and the content of the Program Counter is (PC).
Then if the condition checked is true, the
instruction located immediately after the current
instruction (PC+1) is missed and the next

instruction located on address (PC+2) is executed.
Let Rn[#Bit] denote a random bit of Rn. The Skip mechanism can be described by

the following operator for organizing conditional branches:

1)(Pc else(Pc)

1} or {0 --2)(Pc then(Pc)value" bit test "Bit]Rn[# if

+←

+←=

 (22)

The Skip mechanism can be implemented with two instructions:

><>< bit# ,Rn et Skip if SRn Bit andTest

1)(PC (PC) else

2)(PC (PC) then 1 bit]Rn[# if

:nDescriptio --

+←

+←= (23)

><>< bit# ,Rn lear Skip if CRn Bit andTest

1)(PC(PC) else

2)(PC(PC) then 0 bit]Rn[# if

:Descrition --

+←

+←= (24)

Instructions (23) and (24) can be used to organize conditional branches with all bits
(#Bit) of all Rn. In case that the base and complex flags are integrated into the SR (Table)
and , these instructions can be used to organize 18 conditional branches
on signed or unsigned operands.

bit]SR[# bit]Rn[# =

- I.1-6 -

International Conference on Computer Systems and Technologies - CompSysTech’06

--<<1>> VHDL Program “Status Register”

The microcontroller components
needed for the Skip mechanism
implementation are shown on Fig.3.

process (clk, reset,din,sr, Cout,
Vout,sr_we,c_en,z_en,v_en,n_en)

begin
if reset = '1' then sr <= "00000000";
els (clk e '
-- << 1.1 >> write din in sr

if ' vent and clk = 0') then

 if (sr_we = '1')then --if sr is dest
sr <= din;
if (din = ("00000000") and

 (z_en = '1')
-- set actual Z flag
 then Z <= '1'; sr_cf <= '1';

 else Z <= '0'; sr_cf <= '1';
 end if;
 else
-- << 1.2 >> set status register buffer
 if c_en = '1'

then C <= CCF; sr_cf <= '1';
 end if;
 if (din = ("00000000") and

 (z_en = '1')
 then Z <= '1'; sr_cf <= '1';
 else Z <= '0'; sr_cf <= '1';
 end if;
 if v_en = '1'
 then V <= Overflow;sr_cf <= '1';
 end if;

Fig. 3. Status Register. Multiplexer for
checking bit operands if n_en = '1'

 then N <= din(7); sr_cf <= '1';
 end if;
 end if;
-- << 1.3 >> set status register if
-- change one or more base flag’s
 -- executing in next clk

 if sr_cf = '1' then

The SR description in VHDL is shown
in program <<1>>. It consists of three
fragments:

<< 1.1 >> If SR receives the result of
the currently executed instruction, FR
generates the wesr _ signal, which allows
sending to SR. If then the Z
flag must be set.

Din 0=Din

 <<1.2>> Otherwise, the C, Z, V, N
triggers of a buffer of the base SR flags are
set. A change in the state of these triggers is
only possible if the currently executed
instruction can affect the SR flags. CU
generates the signals

 while
decoding every instruction. Those signals
are used as a condition allowing the change
of C, Z, V, and N. A change in the state of
one or more of those triggers sets the trigger .

ENNENVENZENC _,__,_,_

cfsr _

 -- set base flag’s {C,Z,V,N}
sr(0) <= C;
sr(1) <= Z;
sr(2) <= V;
sr(3) <= N;

 -- set complex flag’s {CF0,..,CF2}
sr(4) <= Z or C; -- CF0
sr(5) <= N xor V; -- CF1
sr(6) <= Z or (N xor V);-- CF2

 -- reset sr change flag
 sr_cf <= '0';
 end if;
end if;
end process;

 << 1.3 >> If there is a change in the buffer of the base flags ()'1' _ =cfsr , the SR flags
are set during the next cycle of clk . The content of the triggers is stored in the
base flags of SR.

NVZC ,,,

The complex flags are set in conjunction with the logical functions defined in
(20),.. (22). Then, is cleared.

2,..,0 CFCF
cfsr _

- I.1-7 -

International Conference on Computer Systems and Technologies - CompSysTech’06

A multiplexer integrated in
the ALU (fig. 3) can be used to implement
the checking of bit operands. Let’s assume
that the input ALU registers are set with:

)_(MUXTB
-- <<2>> VHDL Program “test bit mux”
process (a,b)
begin
-- convert #bit in integer
 sbf_sel<=conv_integer(b(2 downto 0));
end process;
 with sbf_sel select

Bit)((b) #←
luding SRall Rn inc (Rn)(a) −−← .

Then can be realized with
the following function:

)_(MUXTB -- tbf multiplexor

701210120012 ...,..,...... abbbabbbabbbtbf ∨∨∨=

Obviously, the first conjunction of the
 function tests the zero bits of all Rn. If

the a register is set with SR, then the first
conjunction of the function
corresponds to the current state of the C
flag. The other conjunctions of the tbf function can be used to test the other bits of Rn
and the other SR flags respectively.

tbf

tbf

sbf <= a(0) when 0, -- C
 a(1) when 1, -- Z
 a(2) when 2, -- V
 a(3) when 3, -- N
 a(4) when 4, -- CF0
 a(5) when 5, -- CF1
 a(6) when 6, -- CF2

 a(7) when 7; --
SR[7]

The VHDL program realizing the multiplexer is shown in <<2>>. tbf

6. CONCLUSIONS

A method for configuring the SMCore microcontroller with base and complex flags is

offered, based on the analysis of the conditions for setting the status register flags.
An approach to reducing the number of instructions for organizing conditional

branches is shown, based on the architectural features of the microcontroller.
A method for organizing all branches with two instructions based on the Skip

mechanisms is chosen.
The components realizing the Skip mechanisms in VHDL are shown.
The results of the research conducted can be used in designing FPGA-based 8-bit

RISC microcontrollers.

REFERENCES

[1] www. microchip.com/pic 16 family

[2] www. intel.com/msc51 family

[3] www. atmel.com/atmega family

[4] Kanev I., FPGA Based Micro controller for Voice Message Synthesis, Proc. of

CompSysTech’05, Int. Conf. on Computer Systems and Technologies, 2005, pp 1.3.1-
1.3.7

ABOUT THE AUTOR

Ivan Kanev, Department of Computer Systems, Technical University Sofia – Branch

Plovdiv Phone +359 32 659 704, E-mail: ikanev@it-academy.bg.

- I.1-8 -

