
International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- 1 -

General purpose GPU programming

Dimitar Atanasov

Abstract: The paper describes programming features of the modern graphics hardware. It accents on

the features introduced in Microsoft DirectX 9.0 and using them in general purpose programming of the
graphics hardware for effective offload of the CPU. As reference is used NVIDIA’s GeForce FX GPUs.

Key words: GPU, DirectX, Pixel and Vertex Shaders.

INTRODUCTION
Modern computer graphics hardware contain extremely powerful graphics

processing units (GPU). These GPUs are designed to perform a limited number of
operations on very large amounts of data. They typically have more than one processing
pipeline working in parallel with each other. They can in fact be thought of as highly
parallel Single Instruction Multiple Data (SIMD) type processors.

The performance of these GPUs is also growing at an extraordinary rate. In fact
over the last decade or so the processing power of GPUs has been growing at a rate
faster than Moore's Law, which governs the performance growth rate of CPUs. In a
presentation at Graphics Hardware 2003 titled “Data Parallel Computing on Graphics
Hardware”, Ian Buck estimated that the current Nvidia GeForce FX 5900 GPU
performance peaks at 20 GigaFlops. This is equivalent to a 10-GHz Pentium 4 processor.

The latest generation of graphics hardware also contain much more programmable
GPUs. Previously the number of operations that could be performed on the GPU was
limited to certain fixed functions such as Texture and Lighting. However the GPU has
evolved to a situation where we now have user programmable vertex and texture units.
These are commonly referred to as vertex shaders and fragment shaders respectively.
These programmable shaders allow for much more realistic visual effects in computer
games especially, which is the main driving force behind the computer graphics hardware
industry.

A further improvement in these new GPUs is the increase in pixel depth from 32 bits
per pixel to 128 bits per pixel. This means that each red, green, blue, and alpha
component can now have 32-bit floating point accuracy throughout the graphics pipeline.
This increase in data accuracy combined with the increased programmability of the GPU
means that the GPU is moving towards a more general purpose processor design.

In the last few years there has been an increase in research in the area of using
graphics hardware for general purpose computing. Yang and Welch [1] show how to
perform fast image segmentation and smoothing using graphics hardware. They
implemented functions like erosion and dilation on the GPU. They state that this
implementation is over 30% faster that a similar CPU implementation. Larsen and
McAllister [2] describe a technique for doing fast matrix multiplies using graphics
hardware. Typically these were very large matrices. There is also an implementation of the
Fast Fourier Transform implemented on the GPU [3].

1. GPU
The accelerators are gradually approaching common general-purpose processors

in several aspects:
• Considerable increase of clock speeds;
• The rough force is now being replaced by fine optimization algorithms and

approaches;
• Computational aspect is in the forefront;
• Developed system of the general-graphic-purpose commands;

- V.11-1 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

• Support of several universal formats (types) of data;
• Possible superscalar and speculative execution;

- 2 -

• Complexity and flexibility of programs are getting less limited.
A representative of programmable GPU is NVIDIA’s GeForce FX family (fig. 1)

Fig. 1. block diagram of the GeForce FX

The GPU has 3 vertex and 8 fragment processors.

1.1. Vertex Processor
The GeForce FX has three independent vertex processors which fully comply (and

even exceed) with the DX9 specification for vertex shaders 2.0 (fig. 2).

Fig. 2. Block diagram of vertex processor in DX9

Intermediate data are processed and stored in the floating-point format F32. At the
input the shader's program has up to 16 4D vectors - the source geometrical data. At the
output we have a vertex position in the screen coordinates, a pixel size if sprites are
involved, 8 vectors of texture coordinates and 2 vectors of color values which are then
interpolated (while triangles are rendered) for each pixel. After interpolation values of these
vectors will get into the pixel shader as input parameters. Besides, there are 256 constant
vectors assigned from outside and 12 temporary general-purpose registers used for
storing intermediate data. There are also 4 special registers - samplers which let the vertex
shader select values from textures for using textures as displacement maps and other
similar effects.

From this point of view a vertex processor reminds any other general-purpose
processor. A shader is a program which controls a vector ALU processing 4D vectors. A
shader's program can be 256 ops long but it can contain loops and transitions. For

- V.11-2 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

organization of loops there are 16 integer registers of counters I which are accessible from
the shader only for reading, i.e. they are constants assigned outside in an application. For
conditional jumps there are 16 logic (one-bit) registers B. Again, they can't be changed
from the shader. As a result, all jumps and loops are predetermined and can be controlled
only from outside, from an application.

Also the set of instructions of vertex shaders in the GeForce FX was extended
compared to the DX9, with normal trigonometric functions and conditional write and
reorder instructions. It's interesting that realization of trigonometric functions in the
GeForce FX is very quick - it takes the same time to calculate SIN or COS as a couple of
additions. It seems that it operates with special matrix execution units together with big
tables of constants.

Here are commands supported by the vertex processors of the GeForce FX:
• Add and multiply (ADD, DP3, DP4, DPH, MAD, MOV, SUB)
• Math (ABS, COS, EX2, EXP, FLR, FRC, LG2, LOG, RCP, RSQ, SIN)
• Set On (SEQ, SFL, SGR, SGT, SLE, SLT, SNE, STR)
• Branching (BRA, CAL, NOP)
• Address Registers (ARL, ARR)
• Graphics-oriented (DST, LIT)
• Minimum/maximum (MAX, MIN)

2. Pixel processors and texture units

The GeForce FX has eight independent pixel processors which fully comply with the
DX9 specification for pixel shaders 2.0 (fig. 3).

Fig. 3. Block diagram of pixel processor in DX9

At the input there are 8 texture coordinates interpolated across the triangle surface

(with perspective correction) and two interpolated color vectors. Originally, these vectors
were calculated for each triangle vertex, but to obtain their values for each pixel rendered
by a pixel shader we have to interpolate them depending on a position of a given pixel
relative to the vertices. From the programmer's point of view these vectors can contain
anything, not just texture coordinates and color. The pixel shader will define how to use
them.

At the output there are up to 4 different color values (each being a 4D vector)
recorded into different output frame buffers and one depth value which we can change and
record. There are 32 constant vectors and 12 temporary vector registers.

In course of execution of a shader GPU can fulfill texture fetching, up to 16 different
textures are available (the depth of nesting of dependent fetches mustn't exceed 4). For
texture fetching there is a special command which indicates where to send the result, from
which texture (one of 16 registers of samplers) and according to which coordinates data
are to be fetched. Contrary to the previous generation this is a normal command of a
shader and can be used in any place in any order. But the number of commands of
fetching is limited - although the total length of a shader can reach up to 96 instructions,

- 3 - - V.11-3 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- 4 -

the number of requests to textures mustn't exceed 32 and number of other instructions
mustn't exceed 64.

Contrary to a vertex processor which always works with the F32 data format, a pixel
processor supports three formats- F32, F16 and integer I12. The latter two formats are not
just useful for compatibility with old shaders 1.x but also provide speed gains in
calculations.

In the DX9 the system of commands of a pixel processor is similar to the system of
commands of a vertex one:

• Add and multiply (ADD, LRP, DP3, DP4, LRP, MAD, MOV, SUB)
• Texturing (TEX, TXD, TXP)
• Partial Derivatives (DDX, DDY)
• Math (ABS, COS, EX2, EXP, FLR, FRC, LG2, LOG, NRM, POW, RCP,RSQ, SIN)
• Set On (SEQ, SFL, SGR, SGT, SLE, SLT, SNE, STR)
• Graphics-oriented (DST, LIT, RFL)
• Minimum/maximum (MAX, MIN)
• Macros (SINCOS, CRS)
• Pack (PK2H, PK2US, PK4B, PK4UB, PK4UBG, PK16)
• Unpack (UP2H, UP2US, UP4B, UP4UB, UP4UBG, UP16)
• Kill (KIL)

The performance of commands drops down twice while processing floating-point
data compared to integer data (this is a pure computational performance without
accounting for losses caused by increased data volumes). The pixel processor of the
GeForce FX can execute up to two integer and one floating-point command or two texture
access operations per clock — i.e. it acts as a superscalar processor in case of integer
operations and reception of sampled texture values from texture units. From NV35
(GeForce FX 5900) the GPU can execute up to two floating-point command.

3. Programming GPU

The GPU is designed for operating on large continuous streams of vertex and
fragment data. Vertices are points in 3-D space which definene graphics primitives like
triangles, polygons, rectangles etc. These primitives are used to build up the geometry of
the scene and define any 2-D or 3-D models to be displayed. In older hardware the
geometry sent to the graphics card was static. If this geometry or model data had to be
altered in some way, it had to be transformed on the CPU and the new vertices
downloaded to the GPU. Vertex shaders were designed to allow more control over vertex
transformation on the GPU itself. This has obvious benefits as it frees up the CPU for other
processes and also eliminates the need to download the same model over and over again.

Textures are images which can be mapped onto any of the graphics primitives to
add detail to a scene. For example a texture of skin can be mapped on to a model of a
human to make it look more life-like. The texture mapping stage is after the vertex stage in
the graphics pipeline. Fragments are the name given to the data in the pipeline before it
gets output as pixels to the screen. Fragments are slightly different than pixels because
there can be fragments which will occupy more than one pixel on the screen. At the texture
stage the texture image is looked up for the correct color to add to the fragment before it is
converted to a pixel(s). Similar to vertex shaders, previous generation hardware texture
units were limited in the operations they could perform on fragments. Fragment shaders
were introduced to allow much more control of how textures are applied to the fragments.
Fragment shaders also tend to be more powerful than vertex shaders as they are usually
operating on higher volumes of data. They can also perform memory reads as they look up
values in textures. Pixels are finally rendered at end of the graphics pipeline in a
conceptual device called the framebuffer.

- V.11-4 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- 5 -

Generally pixels rendered to the framebuffer are made visible on the screen to the
user. However this framebuffer data can become corrupted if other windows on the screen
are moved and overlap with the current window. This is because the same framebuffer,
which is a piece of GPU memory, is shared for all applications on the desktop. To
overcome this problem another useful feature of modern graphics hardware is exploited:
off-screen rendering buffers called pixel buffers (Pbuffers). These Pbuffers reside in GPU
memory and are similar to the framebuffer, except they are generated and controlled by
the application. Also, the framebuffer does not benefit the increase in pixel depth and is
limited to 32 bits per pixel. Pbuffers are necessary if a 128 bits per pixel rendering buffer
and floating point computation are required. If further processing of the results generated
is needed, the Pbuffers can be used as a texture and passed through the graphics pipeline
again.

In order to use the GPU for general purpose computing the problem has to be
mapped onto the GPUs programming architecture. In this case per-pixel operations on the
GPU are required. The results are then read back to the CPU. To achieve this the images
have to be downloaded as textures to the GPU for use in fragment programs. This
involves rendering a rectangle and texture mapping the images to this rectangle. If this
rectangle is the same size as the images then the fragments will correspond on a one to
one basis with the pixels in the texture. Fragment programs can then be used to do the
required calculations on the GPU, and results output to a Pbuffer.

For this work the cross platform OpenGL API was used for interfacing with the
graphics hardware. The other main graphics API is Microsoft Direct X. Programming the
GPU involves writing custom vertex and fragment programs to be executed by the vertex
and fragment shaders.

One of the main bottlenecks when using the GPU for image processing is the time
taken to read the data back from the graphics hardware to the CPU. The Accelerated Port
Technology (AGP) standard is a means of transferring data quickly to the graphics
hardware. It operates at a multiple of the PCI bus speed; AGP4x operates at 4 times the
PCI bus speed and the latest AGP standard, AGP8x, operates at 8 times the PCI bus
speed. However reading data back from the graphics hardware is limited by the standard
PCI bus speed. With a PCI bus speed of 66 MHz the theoretical bandwidth available is
approximately 260 MB/sec, whereas the AGP8x bus has a peak bandwidth of 2.1 GB/sec.
In tests however a peak data read bandwidth of 180 MB/sec or 45 MPixels/sec at 32bits
per pixel was achieved. For PAL resolution frames this gives a peak frame rate of 113
frames/sec for reading data from the graphics card. Downloading the image as a texture,
doing the interpolation, and reading the data back resulted in 75 frames/sec at PAL
resolution. Doing the same interpolation on the CPU achieved 24 frames/sec. A new PCI
bus standard due out in 2004 called PCI Express, may help with this problem by providing
greater bandwidth over the PCI bus.

CONCLUSIONS AND FUTURE WORK
Modern video processors delivers great computational power, which remains unused

in standard applications. This allows use of the GPU as mathematical coprocessor
operating on large continuous streams. Main difficulties are:

• low accuracy – 32 bit floating point number;
• limitation in shaders programs;
• low peak data read bandwidth;

Despite of those limitations use of the GPU as general purpose processor is
increased in the last few years due to rapid development of new families of GPUs.

- V.11-5 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- 6 -

REFERENCES

1. R. Yang and G. Welch, “Fast image segmentation and smoothing using
commodity graphics hardware”, To appear in the journal of graphics tools, special issue on
Hardware-Accelerated Rendering Techniques , 2003.

2. E. S. Larsen and D. McAllister, “Fast matrix multiplies using graphics
hardware”,Supercomputing 2001 , November 2001.

3. K. Moreland and E. Angel, “The FFT on a GPU”, in Graphics Hardware 2003,
July 2003.

ABOUT THE AUTHOR
dipl.-Ing. Dimitar A. Atanasov, Ph. D. student, Department of Computer Systems and

Technologies, University of Gabrovo, Phone: +359 66 223 501, Е-mail:
d_atanasov@tugab.bg.

- V.11-6 -

