
International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

Alternative Approach for Learning from Examples

Ludmil Dakovski, Zekie Shevked

Abstract: This paper introduces a new effective algorithm for learning from examples. Our approach is

based on representing sets of positive and negative training instances as logical functions in sum-of-
minterms form. The main goal is to find a more compact representation of classification function and use it to
further prediction of unknown cases. We propose an algorithm that finds this functions prime implicants using
a fast strategy to minimization. The found prime implicants correspond to positive examples and does not
correspond to negative ones, so they can successfully classify new unknown instances.

Key words: Learning from Examples, Classification, Prime Implicant, Function Minimization.

INTRODUCTION
Concept learning from examples is a problem with great actuality and wide

application area. There are a lot of domains where automated extraction of more general
description from available positive and negative examples is required. Science and
industry needs employed machine learning researchers to improve for practical use
existing techniques or to develop new faster methods.

Nowadays one of the most popular research areas in Machine Learning is learning
from Examples. The main idea is having correctly classified training instances to learn a
classifier that describes the examples in a more compact way and that can also be used to
classify new (unknown) cases [4]. Because of high importance and wide application area
of this problem a lot of work has done in this field, there are many publications and
practical tools for learning from examples and classification. Fundamental theoretical value
in this area has the version space approach of Mitchell [10]. It searches for conjunctive
classification rule but some important shortcomings make this method impractical. Other
researchers consider improvements by extending conjunctive to disjunctive concepts. It is
common opinion that conjunction does not fully represent possible concepts and both
disjunction and conjunction should be used.

The problem of finding minimal descriptions for a class using examples as input is
NP-complete. It is time and resource consuming and in some cases even impossible to
examine all possible examples. That is why our approach considers only available training
instances. We use sum-of-minterms form (disjunction of conjunctions) to represent two
logical functions - one that corresponds to all positive examples and other that
corresponds to all negative examples. The main goal of the algorithm is to find minimal
representation that corresponds to all positive and probably some of unknown cases but
does not correspond to any negative sample. To do this we apply an effective and fast
minimization algorithm. As a result we get prime implicants list and use it for further
classification. If a new unclassified instance is corresponded to implicants list it belongs to
the learned concept, i.e. it is classified positive; otherwise it is classified negative. We are
going to publish a detailed description of this approach with a proof.

The paper is organized as follows: Section 1 discusses in brief some fundamental
methods for learning from examples, section 2 presents the new approach and section 3
mentions experimental results from applying our method. Conclusion follows and future
tasks are discussed at the end.

APPROACH FOR LEARNING FROM EXAMPLES
1. State of problem

1.1.Version space. Version spaces are an approach to concept learning [10, 11,
and 12]. They are defined as sets of descriptions in concept languages that correctly
classify training instances. When concept languages are partially ordered a version space
is delimited by two boundary sets – the sets of most specific and most general

- IIIB.5-1 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

hypotheses. Boundary sets are sets of minimal and maximal descriptions in the version
space. It was proven that they correctly represent the version space [10, 16]. This
approach is used in Mitchell’s Candidate-Elimination (CE) algorithm. It incrementally learns
concepts from positive and negative instances performing a bidirectional search through
the space of hypotheses described by the concept language [1]. Hypothesizes in this
space are considered as conjunction of attribute-value pairs. The algorithm represents and
updates the version space by maintaining the set S containing the maximally specific
consistent concepts and the set G containing the maximally general consistent concepts.
Each example leads to changes in the version space. A positive example prunes concepts
in G which do not correspond to it and causes all concepts in S which do not correspond to
the example to be generalized just enough to correspond to it. A negative example prunes
concepts in S that correspond to it and causes all concepts in G that correspond to the
example to be specialized just enough to exclude it. As more examples are examined, the
version space shrinks, possibly converging to a single target concept [1]. This approach
has important shortcomings. It is shown that CE algorithm has limited expressive power
[8]. That is why since practical applications of the CE algorithm requiring a restricted
concept language, it may be unable to induce consistent concept [1]. In standard version
spaces learning is a search for conjunctive hypothesis, so learned concept is restricted to
be conjunctive. To overcome this problem alternative version-space representations were
introduced in [6, 7, 8, 13, 14, 15, 16, 17, and 18]. Another negative side is that the size of
the general boundary can grow exponentially in the number of training examples [5].
Furthermore the CE algorithm can not handle noisy training examples. If there is any
incorrectly classified instance, it leads to completely different solution.

1.2.Attribute-value languages. Mitchell distinguishes between an instance
language and a concept language. However, many approaches to concept learning
employ in fact the same language for describing instances and concepts, a strategy that
has been referred to as the Single Representation Trick [3]. A widespread representation
is so called attribute-value language. It is a propositional language in which propositions
are attribute-value pairs. Each attribute has a designated set of allowed values. Attribute-
value pairs may be combined into conjunctive expressions for describing instances or
concepts. The attribute-value pair can be considered as a predicate (statement which can
have a truth value) and the set of these pairs – as a conjunction of the corresponding
predicates. Usually an example has values for all of the attributes but a concept may have
not a value for one or more attribute. This is indicated by “?” instead of value and means
that this attribute is “don’t care” attribute, i.e. it can have anyone of his possible values.
The basic advantage of the attribute-value language is that it allows a straightforward
definition of derivability relation. A concept is said to correspond to an example if the
attribute values of this example are a super-set of the premises of the concept. In other
words a concept corresponds to an example if for each attribute-value pair it has the same
value as the example. Only allowed differences are when in the concept description the
attribute, whose value differs from the corresponding one in the example, is “don’t care”.
By analogy a concept is defined to correspond to (to be more general than) another
concept when the attribute values of the first concept is a super-set of the premises of the
second one.

2. Novel algorithm for learning from examples
We propose a novel effective algorithm for learning from examples. Our approach

aims at finding a more compact classification function that approximates target concept by
corresponding to all positive but no one negative examples. The algorithm is based on
logical function minimization. Attribute-value language is used to represent examples as
predicates. Each example is a conjunction of values corresponding to attributes. We
consider target concept as a logical function with number of arguments equivalent to the

- IIIB.5-2 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

number of attributes. For each combination of input variables target function F
(classification function) takes value “true” or “false” indicating whether this combination
belongs to the learned class or not. But not all of input combinations have a specified
output. We know the output only for training instances and in practical domains they are a
paltry part of all possible cases. What we have is a partly defined function and the goal is
to find a good approximation that is correct for all training instances and would
successfully predict the class of unknown cases. Such an approximation function should
be more compact in order to make further classification easier.

From two-valued logic we know that prime implicants of a function are its shortest
description. In comparison with two-valued logic where an attribute can take one of two
possible values (0, 1), in our approach every attribute can take one of several predefined
values and in common case their number is different for particular attributes. But yet it is a
matter of logical function with two output values depending on input combinations. By
analogy we define the concept prime implicant as a covering to whose number of
restricted attributes is minimal, i.e. it would become incorrect (inconsistent) if any of its
specified attributes were allowed to take all of possible values (“don’t care” attribute). If so,
such an attribute will cause the concept to correspond to one or more negative training
instances and it can not be used for classification.

The process of finding prime implicants is called minimization. This way the goal of
the algorithm is specified to minimize function in order to get its prime implicants. We stand
on a minimization approach for partly defined logical functions described in [2]. There it is
proved that the method works correctly in two-valued logic. In [2] there are considered two
functions – F1 and F0. F1 is a disjunction of all positive training examples represented as
conjunctions. It is an approximation of target classification function that interprets all
undefined states as negative. F0 is a disjunction of all negative training examples
represented as conjunctions. It is an approximation of target function that considers all
undefined states as positive. Although these two functions correctly classify training
instances, they would be a bad choice for solution because they are very restricted and do
not generalize examples any. But they can be used successfully in order to get something
better in between.

It is proven that we can get all prime implicants that correspond to the minterm U from
function F and are a result of all possible reductions of the set of F1s minterms, by
inverting sum-of-minterms form for F0 and removing from the got expression all of the
arguments (attributes) that are not in the same form in U and adducing the expression to
disjunction of conjunctions. Inverting F0 results in ^F0 a conjunction of disjunctions of
attribute values. After applying the rules of Boolean algebra we get a disjunctive
expression of conjunctions. According to [2] this expression contains all prime implicants of
function that corresponds to all positive and all undefined instances (F1). But we do not
need such a restricted function – it would classify every example that is not in the set of
negative examples as belonging to the class. Right here we put in action the positive
examples. The goal is from got list of prime implicants to remove these that do not
correspond to any positive example. For each positive example we should remove all
prime implicants that does not correspond to exactly this positive example. According to
definition the corresponding expresion can not have a value that differs from the
corresponding value in the corresponded instance. This is a criterion for removing
unnecessary prime implicants from the resulting list.

But we can do this still earlier. If from inversion of F0 are removed all attributes whose
values differ from those in the current positive example, we guaranty not to get
unnecessary implicants and this improves the performance. This way from the whole list of
all prime implicants of ^F0 we will get only these that correspond to exactly this positive
instance and some undefined ones. When this is done for all positive examples we have
got a list of prime implicants whose disjunction corresponds to all positive and some of

- IIIB.5-3 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

undefined but no one of negative instances. This disjunction of conjunctions represents a
learned concept; it describes the class in a more compact way because of the properties
of prime implicants.
 Let us show this on the classical example [19]. We are trying to learn under which
circumstances a patient gets an allergic reaction after meals. We have the following
observations about having a reaction:

Table 1. Training data
RESTAURANT WEEK DAY MEAL PRICE REACTION

Sam Friday breakfast cheap Yes
Rubin Friday lunch expensive No
Sam Saturday lunch cheap Yes
Sara Sunday breakfast cheap No
Sam Sunday breakfast expensive No

F1 = Sam * Friday * breakfast * cheap V Sam * Saturday * lunch * cheap
F0 = Rubin * Friday * lunch * expensive V Sara * Sunday * breakfast * cheap V

Sam * Sunday * breakfast * expensive

^F0 = (^Rubin V ^Saturday V ^lunch V ^expensive) * (^Sara V ^Sunday V
^breakfast V ^cheap) * (^Sam V ^Sunday V ^breakfast V ^expensive)

For each one positive instance we find all prime implicants that correspond to it but

do not correspond to negative instances:

F0,1 = (Sam V breakfast V cheap) * (Sam V Friday) * (Friday V cheap) =

= Sam * Friday V Sam * cheap V breakfast * cheap V Friday * cheap
F0,2 = …
Finally we have got these prime implicants that correctly classify input examples.

3. Experimental results
In order to perform experiments the datasets from the UCI machine learning

repository are used. The algorithm was applied to the Tic-Tac-Toe Endgame dataset
donated by David W. Aha [9]. The Tic-Tac-Toe Endgame dataset encodes the complete
set of possible board configurations at the end of tic-tac-toe games, where ”x” is assumed
to have played first. The target concept is ”win for x” (i.e., true when ”x” has one of 8
possible ways to create a ”three-in-a-row”). The dataset contains 958 instances without
missing values, each with 9 attributes, corresponding to tic-tac-toe squares and taking on
1 of 3 possible values: ”x”, ”o”, and ”empty”.

The data set was randomly divided into training (90% of data) and evaluation
(remaining 10% of data) sets. The algorithm was applied to the training set. The classifier
was evaluated for predictive classification accuracy against the corresponding evaluation
set. This process was repeated 8 times for the data set. In the program implementation of
the algorithm we have used a tuning factor n which is the number of implicants that must
cover the tested instance in order to classify it positive. This factor is brined in because in
some cases the whole list of prime implicants may cover so many of the possible
instances as the classifier decides that almost every testing sample is positive. For that
purpose we increase the needed number of covering implicants and this way improve the
correctness of the classifier. With this new possibility we have gained in experiments
enviable accuracy of 0% error after tuning the factor n. Of course more testing is required
with different data sets. But in practical domains this technique will be very useful to divide
several times all available instances randomly 90/10 and find the most appropriate factor n
that can be used afterwards for real classifying tasks on unknown cases.

- IIIB.5-4 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Tuning factor

Er
ro

r p
er

ce
nt

ag
e

experiment 1
experiment 2
experiment 3
experiment 4

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Tuning factor

E
rr

or
 p

er
ce

nt
ag

e

experiment 5
experiment 6
experiment 7
experiment 8

Figure 1. Experimental results

Essential advantage of the algorithm is its short time of performing. It finds prime
implicants for tic-tac-toe data set in approximately 2.23min on a PC machine with 256
RAM and processor 846 MHz. Naturally the needed time highly depends on the particular
data set.

CONCLUSIONS AND FUTURE WORK
In the paper a new effective algorithm for learning from examples is introduced. The

approach aims at finding a more compact classification function that approximates target
concept by corresponding to all positive but no one negative examples. The algorithm is
based on fast strategy logical function minimization. Attribute-value language is used to
represent examples as predicates. Each example is a conjunction of values corresponding
to attributes. We consider target concept as a logical function with number of arguments
equivalent to the number of attributes. The found prime implicants correspond to positive
examples and does not correspond to negative ones, so they can successfully classify
new unknown instances.

The presented approach to learning from examples solves some problems of existing
methods. It has a larger concept space because of disjunctive extension. As we see from
experimental results this method is efficient and fast.

.
Further work includes applying the approach to numerical and structured types of

attributes. Another future task is to consider representation of got concepts in a decision
tree and generating rules from it. Also extending the classifier to work for more than one
class is possible, but this would increase the methods complexity. We aim at extending
this machine learning concept to data mining.

REFERENCES
[1] Carpineto, C. Trading off consistency and efficiency in version-space induction.

Proceedings of Ninth International Machine Learning Conference, Aberdeen, Scotland, pp.
43-48, 1992.

[2] Даковски, Л. Опростяване на превключвателни функции, зададени с голям
брой неопределени набори на аргументите. сп. Автоматика и изчислителна
техника, стр. 42-47. 1969.

[3] Dietterich, T., B. London, K. Clarkson, G. Dromey. Learning and inductive
inference. The Handbook of Artificial Intelligence, Volume III. William Kaufmann, Los Altos,
CA, 1982.

[4]Fensel, D., M. Wiese. From JoJo to Frog: Extending a bi-directional search
strategy to a more flexible three- directional search. In: Beiträge zum 7.
Fachgruppentreffen Maschinelles Lernen, Kaiserslautern 1994.

[5] Haussler, D.. Quantifying inductive bias: Ai learning algorithms and valiant’s
learning framework. Artificial Intelligence, 36:177–221, 1988.

- IIIB.5-5 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

[6] Hirsh, H.. Polynomial-time learning with version spaces. In Proceedings of the

Tenth National Conference on Artificial Intelligence (AAAI-92), pages 117–122, Menlo
Park, CA, 1992.

[7] Hirsh, H., N. Mishra, and L. Pitt. Version spaces without boundary sets. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97),
pages 491–496, Menlo Park, CA, 1997.

[8] Idemstam-Almquist. Demand networks: an alternative representation of version
spaces. Master’s thesis, Department of Computer Science and Systems Sciences, The
Royal Institute of Technology and Stockholm University, Stockholm, Sweden, 1990.

[9] Merz, C., P. Murphy : UCI Repository of Machine Learning Databases
[http://www.ics.uci.edu/ ~mlearn/MLRepository.html]. Department of Information and
Computer Science, University of California, Irvine, CA (1998)

[10] Mitchell, T.. Version spaces: an approach to concept learning. PhD thesis,
Electrical Engineering Dept.,Stanford University, Stanford, CA, 1978.

[11] Mitchell, T.. Generalization as search. Artificial Intelligence, 18(2):203–226,
1982.

[12] Mitchell, T.. Machine learning. McGraw-Hill, New York, NY, 1997.
[13] Sablon, G.. Iterative versionspaces with an application in inductive logic

programming. PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 1995.
[14] Sebag, M., C. Rouveirol. Tractable induction and classification in first order logic

via stochastic matching. In Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI-97), pages 888–893, San Francisco, CA, 1997.

[15] Sebag, M., C. Rouveirol. Resource-bounded relational reasoning: induction and
deduction through stochastic matching. Machine Learning, 38(1-2):41–62, 2000.

[16] Smirnov, E.. Conjunctive and disjunctive version spaces with instance-based
boundary sets. PhD thesis, Department of Computer Science, Maastricht Univeristy,
Maastricht, The Netherlands, 2001.

[17] Smirnov, E., P.J. Braspenning. Version space learning with instance-based
boundary sets. In Proceedings of the Thirteenth European Conference on Artificial
Intelligence (ECAI-98), pages 460–464, Chichester,UK, 1998.

[18] Smith, B., P.S. Rosenbloom. Incremental non-backtracking focusing: a
polynomially bounded generalization algorithm for version spaces. In Proceedings of the
Eight National Conference on Artificial Intelligence (AAAI-90), pages 848–853. 1990.

[19] Winston, P.. Artificial Intelligence. Addison-Wesley, 3rd edition. 1992.

ABOUT THE AUTHORS
Ludmil Dakovski, D.S., Department of Computer Systems and Technologies,

Technical University - Sofia, Phone: +359 02 9652414, Е-mail: seven-in@bulinfo.net.
Zekie Shevked, mag.student at Computer Systems and Technologies, Technical

University – Sofia, branch Plovdiv, Е-mail: zekie_shevked@yahoo.com

- IIIB.5-6 -

