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Abstract: This paper introduces a new effective algorithm for learning from examples. Our approach is 

based on representing sets of positive and negative training instances as logical functions in sum-of-
minterms form. The main goal is to find a more compact representation of classification function and use it to 
further prediction of unknown cases. We propose an algorithm that finds this functions prime implicants using 
a fast strategy to minimization. The found prime implicants correspond to positive examples and does not 
correspond to negative ones, so they can successfully classify new unknown instances. 
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INTRODUCTION  
Concept learning from examples is a problem with great actuality and wide 

application area. There are a lot of domains where automated extraction of more general 
description from available positive and negative examples is required. Science and 
industry needs employed machine learning researchers to improve for practical use 
existing techniques or to develop new faster methods. 

Nowadays one of the most popular research areas in Machine Learning is learning 
from Examples. The main idea is having correctly classified training instances to learn a 
classifier that describes the examples in a more compact way and that can also be used to 
classify new (unknown) cases [4]. Because of high importance and wide application area 
of this problem a lot of work has done in this field, there are many publications and 
practical tools for learning from examples and classification. Fundamental theoretical value 
in this area has the version space approach of Mitchell [10]. It searches for conjunctive 
classification rule but some important shortcomings make this method impractical. Other 
researchers consider improvements by extending conjunctive to disjunctive concepts. It is 
common opinion that conjunction does not fully represent possible concepts and both 
disjunction and conjunction should be used. 

The problem of finding minimal descriptions for a class using examples as input is 
NP-complete. It is time and resource consuming and in some cases even impossible to 
examine all possible examples. That is why our approach considers only available training 
instances. We use sum-of-minterms form (disjunction of conjunctions) to represent two 
logical functions - one that corresponds to all positive examples and other that 
corresponds to all negative examples. The main goal of the algorithm is to find minimal 
representation that corresponds to all positive and probably some of unknown cases but 
does not correspond to any negative sample. To do this we apply an effective and fast 
minimization algorithm. As a result we get prime implicants list and use it for further 
classification. If a new unclassified instance is corresponded to implicants list it belongs to 
the learned concept, i.e. it is classified positive; otherwise it is classified negative. We are 
going to publish a detailed description of this approach with a proof. 

The paper is organized as follows: Section 1 discusses in brief some fundamental 
methods for learning from examples, section 2 presents the new approach and section 3 
mentions experimental results from applying our method. Conclusion follows and future 
tasks are discussed at the end. 

 
APPROACH FOR LEARNING FROM EXAMPLES 
1. State of problem 

1.1.Version space. Version spaces are an approach to concept learning [10, 11, 
and 12]. They are defined as sets of descriptions in concept languages that correctly 
classify training instances. When concept languages are partially ordered a version space 
is delimited by two boundary sets – the sets of most specific and most general 
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hypotheses. Boundary sets are sets of minimal and maximal descriptions in the version 
space. It was proven that they correctly represent the version space [10, 16]. This 
approach is used in Mitchell’s Candidate-Elimination (CE) algorithm. It incrementally learns 
concepts from positive and negative instances performing a bidirectional search through 
the space of hypotheses described by the concept language [1]. Hypothesizes in this 
space are considered as conjunction of attribute-value pairs. The algorithm represents and 
updates the version space by maintaining the set S containing the maximally specific 
consistent concepts and the set G containing the maximally general consistent concepts. 
Each example leads to changes in the version space. A positive example prunes concepts 
in G which do not correspond to it and causes all concepts in S which do not correspond to 
the example to be generalized just enough to correspond to it. A negative example prunes 
concepts in S that correspond to it and causes all concepts in G that correspond to the 
example to be specialized just enough to exclude it. As more examples are examined, the 
version space shrinks, possibly converging to a single target concept [1]. This approach 
has important shortcomings. It is shown that CE algorithm has limited expressive power 
[8]. That is why since practical applications of the CE algorithm requiring a restricted 
concept language, it may be unable to induce consistent concept [1]. In standard version 
spaces learning is a search for conjunctive hypothesis, so learned concept is restricted to 
be conjunctive. To overcome this problem alternative version-space representations were 
introduced in [6, 7, 8, 13, 14, 15, 16, 17, and 18]. Another negative side is that the size of 
the general boundary can grow exponentially in the number of training examples [5]. 
Furthermore the CE algorithm can not handle noisy training examples. If there is any 
incorrectly classified instance, it leads to completely different solution. 

1.2.Attribute-value languages. Mitchell distinguishes between an instance 
language and a concept language. However, many approaches to concept learning 
employ in fact the same language for describing instances and concepts, a strategy that 
has been referred to as the Single Representation Trick [3]. A widespread representation 
is so called attribute-value language. It is a propositional language in which propositions 
are attribute-value pairs. Each attribute has a designated set of allowed values. Attribute-
value pairs may be combined into conjunctive expressions for describing instances or 
concepts. The attribute-value pair can be considered as a predicate (statement which can 
have a truth value) and the set of these pairs – as a conjunction of the corresponding 
predicates. Usually an example has values for all of the attributes but a concept may have 
not a value for one or more attribute. This is indicated by “?” instead of value and means 
that this attribute is “don’t care” attribute, i.e. it can have anyone of his possible values. 
The basic advantage of the attribute-value language is that it allows a straightforward 
definition of derivability relation. A concept is said to correspond to an example if the 
attribute values of this example are a super-set of the premises of the concept. In other 
words a concept corresponds to an example if for each attribute-value pair it has the same 
value as the example. Only allowed differences are when in the concept description the 
attribute, whose value differs from the corresponding one in the example, is “don’t care”. 
By analogy a concept is defined to correspond to (to be more general than) another 
concept when the attribute values of the first concept is a super-set of the premises of the 
second one. 
 

2. Novel algorithm for learning from examples  
We propose a novel effective algorithm for learning from examples. Our approach 

aims at finding a more compact classification function that approximates target concept by 
corresponding to all positive but no one negative examples. The algorithm is based on 
logical function minimization. Attribute-value language is used to represent examples as 
predicates. Each example is a conjunction of values corresponding to attributes. We 
consider target concept as a logical function with number of arguments equivalent to the 
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number of attributes. For each combination of input variables target function F 
(classification function) takes value “true” or “false” indicating whether this combination 
belongs to the learned class or not. But not all of input combinations have a specified 
output. We know the output only for training instances and in practical domains they are a 
paltry part of all possible cases. What we have is a partly defined function and the goal is 
to find a good approximation that is correct for all training instances and would 
successfully predict the class of unknown cases. Such an approximation function should 
be more compact in order to make further classification easier. 

From two-valued logic we know that prime implicants of a function are its shortest 
description. In comparison with two-valued logic where an attribute can take one of two 
possible values (0, 1), in our approach every attribute can take one of several predefined 
values and in common case their number is different for particular attributes. But yet it is a 
matter of logical function with two output values depending on input combinations. By 
analogy we define the concept prime implicant as a covering to whose number of 
restricted attributes is minimal, i.e. it would become incorrect (inconsistent) if any of its 
specified attributes were allowed to take all of possible values (“don’t care” attribute). If so, 
such an attribute will cause the concept to correspond to one or more negative training 
instances and it can not be used for classification. 

The process of finding prime implicants is called minimization. This way the goal of 
the algorithm is specified to minimize function in order to get its prime implicants. We stand 
on a minimization approach for partly defined logical functions described in [2]. There it is 
proved that the method works correctly in two-valued logic. In [2] there are considered two 
functions – F1 and F0. F1 is a disjunction of all positive training examples represented as 
conjunctions. It is an approximation of target classification function that interprets all 
undefined states as negative. F0 is a disjunction of all negative training examples 
represented as conjunctions. It is an approximation of target function that considers all 
undefined states as positive. Although these two functions correctly classify training 
instances, they would be a bad choice for solution because they are very restricted and do 
not generalize examples any. But they can be used successfully in order to get something 
better in between. 

It is proven that we can get all prime implicants that correspond to the minterm U from 
function F and are a result of all possible reductions of the set of F1s minterms, by 
inverting sum-of-minterms form for F0 and removing from the got expression all of the 
arguments (attributes) that are not in the same form in U and adducing the expression to 
disjunction of conjunctions. Inverting F0 results in ^F0 a conjunction of disjunctions of 
attribute values. After applying the rules of Boolean algebra we get a disjunctive 
expression of conjunctions. According to [2] this expression contains all prime implicants of 
function that corresponds to all positive and all undefined instances (F1). But we do not 
need such a restricted function – it would classify every example that is not in the set of 
negative examples as belonging to the class. Right here we put in action the positive 
examples. The goal is from got list of prime implicants to remove these that do not 
correspond to any positive example. For each positive example we should remove all 
prime implicants that does not correspond to exactly this positive example. According to 
definition the corresponding expresion can not have a value that differs from the 
corresponding value in the corresponded instance. This is a criterion for removing 
unnecessary prime implicants from the resulting list.  

But we can do this still earlier. If from inversion of F0 are removed all attributes whose 
values differ from those in the current positive example, we guaranty not to get 
unnecessary implicants and this improves the performance. This way from the whole list of 
all prime implicants of ^F0 we will get only these that correspond to exactly this positive 
instance and some undefined ones. When this is done for all positive examples we have 
got a list of prime implicants whose disjunction corresponds to all positive and some of 
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undefined but no one of negative instances. This disjunction of conjunctions represents a 
learned concept; it describes the class in a more compact way because of the properties 
of prime implicants. 
  Let us show this on the classical example [19]. We are trying to learn under which 
circumstances a patient gets an allergic reaction after meals. We have the following 
observations about having a reaction: 

Table 1. Training data 
RESTAURANT  WEEK DAY MEAL  PRICE REACTION  

Sam  Friday  breakfast cheap  Yes  
Rubin  Friday lunch expensive  No  
Sam  Saturday lunch cheap Yes 
Sara Sunday breakfast cheap No 
Sam Sunday breakfast expensive No 

 
F1 = Sam * Friday * breakfast * cheap V Sam * Saturday * lunch * cheap 
F0 = Rubin * Friday * lunch * expensive V Sara * Sunday * breakfast * cheap V  

Sam * Sunday * breakfast * expensive 
 

^F0 = ( ^Rubin V ^Saturday V ^lunch V ^expensive ) * ( ^Sara V ^Sunday V 
^breakfast V ^cheap ) * ( ^Sam V ^Sunday V ^breakfast V ^expensive ) 

 
For each one positive instance we find all prime implicants that correspond to it but 

do not correspond to negative instances: 
 
F0,1 = ( Sam V breakfast V cheap ) * ( Sam V Friday ) * ( Friday V cheap ) = 

= Sam * Friday V Sam * cheap V breakfast * cheap V Friday * cheap 
F0,2 = … 
Finally we have got these prime implicants that correctly classify input examples. 
 
3. Experimental results 
In order to perform experiments the datasets from the UCI machine learning 

repository are used. The algorithm was applied to the Tic-Tac-Toe Endgame dataset 
donated by David W. Aha [9]. The Tic-Tac-Toe Endgame dataset encodes the complete 
set of possible board configurations at the end of tic-tac-toe games, where ”x” is assumed 
to have played first. The target concept is ”win for x” (i.e., true when ”x” has one of 8 
possible ways to create a ”three-in-a-row”). The dataset contains 958 instances without 
missing values, each with 9 attributes, corresponding to tic-tac-toe squares and taking on 
1 of 3 possible values: ”x”, ”o”, and ”empty”. 

The data set was randomly divided into training (90% of data) and evaluation 
(remaining 10% of data) sets. The algorithm was applied to the training set. The classifier 
was evaluated for predictive classification accuracy against the corresponding evaluation 
set. This process was repeated 8 times for the data set. In the program implementation of 
the algorithm we have used a tuning factor n which is the number of implicants that must 
cover the tested instance in order to classify it positive. This factor is brined in because in 
some cases the whole list of prime implicants may cover so many of the possible 
instances as the classifier decides that almost every testing sample is positive. For that 
purpose we increase the needed number of covering implicants and this way improve the 
correctness of the classifier. With this new possibility we have gained in experiments 
enviable accuracy of 0% error after tuning the factor n. Of course more testing is required 
with different data sets. But in practical domains this technique will be very useful to divide 
several times all available instances randomly 90/10 and find the most appropriate factor n 
that can be used afterwards for real classifying tasks on unknown cases. 
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Figure 1. Experimental results 

Essential advantage of the algorithm is its short time of performing. It finds prime 
implicants for tic-tac-toe data set in approximately 2.23min on a PC machine with 256 
RAM and processor 846 MHz. Naturally the needed time highly depends on the particular 
data set. 

 
CONCLUSIONS AND FUTURE WORK 
In the paper a new effective algorithm for learning from examples is introduced. The 

approach aims at finding a more compact classification function that approximates target 
concept by corresponding to all positive but no one negative examples. The algorithm is 
based on fast strategy logical function minimization. Attribute-value language is used to 
represent examples as predicates. Each example is a conjunction of values corresponding 
to attributes. We consider target concept as a logical function with number of arguments 
equivalent to the number of attributes. The found prime implicants correspond to positive 
examples and does not correspond to negative ones, so they can successfully classify 
new unknown instances. 

The presented approach to learning from examples solves some problems of existing 
methods. It has a larger concept space because of disjunctive extension. As we see from 
experimental results this method is efficient and fast.  

. 
Further work includes applying the approach to numerical and structured types of 

attributes. Another future task is to consider representation of got concepts in a decision 
tree and generating rules from it. Also extending the classifier to work for more than one 
class is possible, but this would increase the methods complexity. We aim at extending 
this machine learning concept to data mining. 
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