
International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

A Generalized Model Of A Classical Lempel-Ziv Parser

Jordan Genoff

Abstract : A sequence parsing technique derived from the widely known classical Lempel-Ziv schema
is presented. A comparative analysis of LZ77 and LZ78 is accomplished with aim to strictly determine their
parsing properties and classify them as common ones and distinct ones. The latter are combined in a set of
synthetic quasi-common properties, each of which coincides with any of its originators provided certain
parameters or point of view. The original common properties and the synthetic common ones form a
generalized Lempel-Ziv parser that can behave as both LZ77 and LZ78 in its ability to maintain a dictionary
and to break an input sequence into sub-sequences.

Key words : sequence parsing, dictionary parsers, Lempel-Ziv parsers.

INTRODUCTION
Soon after their promotion in the late 70-ies two amazing algorithms became a

foundation of a new religion – the dynamic dictionary oriented sequence modelling and
coding. The huge significance of LZ77 [1] and LZ78 [2] (the couple denoted below as
LZ7X) has been undoubtedly confirmed in time by the enormous number of scientific and
applied publications. Their properties have been deeply investigated and new techniques
have been developed relying on these fundamental bases and again their properties have
been analysed. Not to mention the fact that almost every general purpose data
compression tool involves some LZ7X-like technique.

This paper concentrates on the source modelling part of these methods – the
dictionary organization and maintenance. The reason is the specific Lempel-Ziv parsing
approach and its ability to create a source model of more complex nature than just a
probabilistic one. This feature makes these methods an appropriate solution to complex
problems in sequence analysis, especially concerning sequential structure inference.

A need for a general model of this class of parsing algorithms arises because there
should exist a way to evaluate their performance as a source modeling technique. The
goal of this paper is to : first, precisely identify what is the same and what is different in the
dictionary organization and maintenance of the two LZ7Xs and ; second, build a general
model of operation that will encompass the properties of both original methods together.

CLASSICAL LEMPEL-ZIV PARSING
Initially devised and mathematically proven to be effective as data compression

algorithms of the new for their time “phrase detecting/encoding” category, LZ7X appeared
to be able to do much wider area of work. This is because of the very interesting way they
construct and maintain the input source model or in LZ7X terms – the famous dictionary,
after which this class of methods is named.

The dictionary is a set of phrases (sequences) of various lengths that have been
identified (parsed) in the input stream from its beginning to the position which the
processing has reached. The processed part of the stream itself is presented as a
concatenation of parsed phrases. The way these sequences have been identified is a core
mechanism of LZ7X. At each step the longest match between the beginning of the non-
processed stream part and a dictionary phrase is searched. After the match is achieved at
least one new phrase is appended to the dictionary – the concatenation of the identified
prefix and the symbol right next to the end of the prefix.

- IIIB.18-1 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

The most important qualitative feature of the parsing is the dictionary adequacy – in
what degree the set of phrases in the dictionary is relevant to the real properties of the
input stream source. The major factors that influence the dictionary adequacy are the
“greedy” nature of parsing and the specific dynamics of dictionary contents. They both
result from the simplicity of operation and have always been a major motivation for further
investigation and innovation.

Though having much in common as a basic principle of source modelling, LZ77 and
LZ78 organize their dictionaries in rather different ways and hence they use rather different
data structures and different techniques to manipulate and search their content.

COMPARATIVE ANALYSIS OF PROPERTIES
The original LZ77 and LZ78 will be presented by a comparative analysis of their

features. The aim is to strictly determine their parsing properties and classify them as
common ones and distinct ones.

The following Table 1 describes the similarities between LZ77 and LZ78 :

Common Features

S01 : Both algorithms operate on discrete input stream of symbols from finite alphabet.

S02 : Both algorithms operate in discernable successive steps.

S03 : There is a clear boundary (parsing boundary) between the already processed and
still non-processed part of the input stream. After each operating step this
boundary is unconditionally moved forwards – in a direction from the beginning to
the end of the stream.

S04 : Both are one-pass algorithms and no reprocessing of any part of the input stream
occurs at any step.

S05 : At each step the longest string at the beginning (the longest prefix) of the non-
processed part of the input stream is identified as being present in a maintained
set of strings (phrases) named “dictionary”.

S06 : The phrases in the dictionary are of various lengths. The dictionary always
contains the empty phrase (zero-length phrase).

S07 : At each step the dictionary is updated after it has been used for prefix
identification. The update is performed by adding new phrases and/or removing
existing phrases.

S08 : At each step, when new phrases are added they depend in some way on : the
current contents of the dictionary ; the identified prefix of the non-processed part of
the stream ; the symbol next to the end of the identified prefix. The phrase, which
is a concatenation of the identified prefix and the symbol next to it is always added
to the dictionary.

S09 : At the end of each step the parsing boundary is moved after the symbol, which is
next to the end of the identified prefix.

S10 : The dictionary always consists of phrases that can be found somewhere in the
processed part of the stream.

Table 1. The similarities between LZ77 and LZ78.

- IIIB.18-2 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

The following Table 2 is a comparative list of differences between LZ77 and LZ78 :

Distinct Features

 LZ77 LZ78

D01 : Upper limit for the identified prefix length :

 There is a limit and it is one of the major
parameters of the algorithm. It defines
the maximum length of the prefix that
the dictionary will be searched for. This
length-constrained area at the beginning
of the non-processed part of the input
stream is named buffer.

There is not a limit. This means that the
identified prefix could be as long as the
longest matvhing phrase in the
dictionary.

D02 : Dictionary organization :

 The dictionary is the ending sub-
sequence of the processed part of the
input stream. It is a linear sequence of a
certain length and each of its sub-
sequences with a length up to the length
of the buffer is a phrase in the
dictionary. This length-constrained area
at the end of the processed part of the
input stream is named window.

A collection of phrases organized as a
digital search tree, according to the
rules described in the next section (rules
T1-T5).

D03 : Dictionary update procedure at each step :

 The adjacent buffer and window are
moved forwards together with the
parsing boundary (which is between
them). Thus the phrase resulting from
the concatenation of the identified prefix
and the symbol next to its end enters
the dictionary. Many other new phrases
may enter the dictionary – these are
sequences beginning somewhere at the
end of the window and ending
somewhere in the buffer. Many existing
phrases may leave the dictionary –
these are sequences beginning
somewhere at the beginning of the
window and ending nearby.

Only one new phrase is added to the
dictionary and it is the concatenation of
the identified prefix and the symbol next
to its end. According to the dictionary
organization this means that a new
inheriting node is added to the tree and
its parent is the node representing the
identified prefix. No phrase is leaving
the dictionary, which means that it is
monotonically growing in size.

D04 : Upper limit for the dictionary size :

 The size of the dictionary is constrained
by the length of the window. There is a
maximum number of all phrases of
length up to the length of the buffer, that
can be placed in a window with a given
length and given contents.

By definition, the size of the dictionary is
unlimited, because the tree may grow
without any limit.

- IIIB.18-3 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

D04 : Dictionary contents 1 :

 The dictionary may contain phrases that
have never been identified as prefixes
due to the possibility for putting them in
it along with the identified prefixes (see
D03). The dictionary may not contain
phrases that have previously been
identified as prefixes due to the
possibility that such phrases may have
left the dictionary (see D03).

The dictionary contains only phrases
that have been identified as prefixes
and besides, all of them for the whole
processed part of the input stream.

D05 : Dictionary contents 2 :

 The dictionary may contain multiple
instances of one and the same phrase.

The dictionary contains a single
instance of each phrase.

Table 2. The differences between LZ77 and LZ78.

GENERALIZATION
The distinct properties of the two LZ7Xs as shown in Table 2 should be combined in a

set of synthetic quasi-common properties, each of which coincides with any of its
respective originators provided certain parameters or point of view. The original common
properties and the synthetic common ones form a generalized Lempel-Ziv parser that can
behave as both LZ77 and LZ78 in its ability to maintain a dictionary and to break an input
sequence into sub-sequences.

Let +∞
−∞=kkX }{ be a discrete symbol stream that takes values in the finite alphabet A

with cardinality A = |A|. For +∞≤≤≤∞− ji let j
iΧ denote the sequence),,,(1 jii XXX K+ .

Let L
1Χ be the sequence of length L to be parsed.

Let b be the position of the first symbol of the non-processed part of L
1Χ , which is the

symbol next to the parsing boundary and thus is the beginning of a buffer 1−+Χ bnb
b of length

bn . Let 1−+Χ wnw
w be a window in the processed part of L

1Χ with beginning at position w and
of length of wn . The concept of buffer and window is taken from LZ77.

Let the algorithm organize a dictionary D as a digital search tree (DST) according to
the following rules :

T1 : Every node, except the root, contains an alphabet symbol.
T2 : Every node, except the leaves, may have one or more than one, but not

more than A inheriting nodes.
T3 : All inheriting nodes of a given node contain different alphabet symbols.
T4 : The root represents the empty phrase.
T5 : Every node represents a phrase, produced as a concatenation of the

symbols in the nodes on the path from the root to the given node.
The concept of dictionary organization as a DST is taken from LZ78. Such kind of

dictionary is able to handle an arbitrary sequence with an arbitrary length and an arbitrary
symbol configuration.

- IIIB.18-4 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

Let 1−+Χ pnb
b of length pn be the identified prefix in the buffer and

pnbX + be the symbol

next to the end of 1−+Χ pnb
b . Let the superscript)(s denote that the respective value or

contents is for the s -th execution step while parsing L
1Χ .

Several new descriptive elements are introduced as follows :

P1 :),()()1(Ks
b

s bb Φ=+ – a procedure to calculate the new position of the buffer
beginning, which is the parsing boundary.

P2 :),()()1(Ks
bn

s
b nn

b
Φ=+ – a procedure to calculate the new length of the buffer.

P3 :),()()1(Ks
w

s ww Φ=+ – a procedure to calculate the new position of the
window beginning.

P4 :),()()1(Ks
wn

s
w nn

w
Φ=+ – a procedure to calculate the new length of the window.

P5 :),,,,,,(1)1()1(1)()1(K
p

pw
nb

nb
b

s
w

snw
w

s
DA

s XnwDD +
−+++−++ ΧΧΦ= – a procedure to

append phrase(s) to the dictionary.

P6 :),,,,()1()1(1)()1(K++−++ ΧΦ= s
w

snw
w

s
DR

s nwDD w – a procedure to remove phrase(s)
from the dictionary.

Combining the above described concepts taken from LZ77 and LZ78 and utilizing the
framework P1-P6, a new representation of the differences between the two algorithms
may be constructed and all distinct features may be represented as quasi-common
features. This is shown in the following Table 3 :

Synthetic (Quasi-Common) Features

 LZ77 LZ78

G01 : Dictionary organization :

 The linear contents of the window is
represented as a DST – every sub-
sequence of 1−+Χ wnw

w of length in],1[bn is
a node in the tree.

The dictionary is organized as a DST.

G02 : Upper limit for the identified prefix length :

 There is a buffer and it determines the
upper limit, so b

s
p nn =)max()(.

There is no buffer, which means the
whole L

bΧ plays role of a buffer, so
1)max()()()(+−=≤ ss

b
s

p bLnn or practically
there is no limit. A limit may be enforced
as a buffer of length bn and the rules for
LZ77 will apply.

G03 : Upper limit for the dictionary size :

 There is a window 1−+Χ wnw
w of length wn

and it can contain a limited number of
sub-sequences of length in],1[bn .

There is no window, which means the
whole 1

1

)(−Χ
sb plays role of a window, so

practically there is no limit. A limit may
be enforced as a window of length wn
and the rules for LZ77 will apply.

- IIIB.18-5 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

G04 : bΦ : Movement of the buffer beginning (parsing boundary) :

 1)()()1(++=+ s
p

ss nbb . 1)()()1(++=+ s
p

ss nbb

D01 :
bnΦ : Modification of buffer length :

b

s
b

s
b nnn ==+)()1(1)()()1(−−=+ s

p
s

b
s

b nnn if there is no explicit
buffer, or as with LZ77 if there is one.

D02 : wΦ : Movement of window beginning :

 1)()()1(++=+ s
p

ss nww 1)()1(==+ ss ww

D04 :
wnΦ : Modification of window length :

w

s
w

s
w nnn ==+)()1(1)()()1(++=+ s

p
s

w
s

w nnn

Table 3. The synthetic quasi-common properties of LZ77 and LZ78.

The generalized model of LZ7X consists of bringing together three components : the
concept of window and buffer from LZ77 ; the concept of DST organized dictionary from
LZ78 ; the set of operators Φ that handle the differences between LZ77 and LZ78.

CONCLUSIONS AND FUTURE WORK
Though the subject of this paper may look like taken from the early days of the

Lempel-Ziv era, it is a fact that no such kind of attempt for descriptive unification of the two
algorithms was found during the comprehensive search that was carried out.

The generalized Lempel-Ziv parsing technique is a powerful tool with which to
conduct full-scale performance estimation and parametric analysis of Lempel-Ziv parsing
when used for sequential structure inference.

Future work will be directed at finding a proper way to represent the dictionary
construction and maintenance in LZ7X derivative algorithms and thus joining them to this
generalized model of dictionary organization.

REFERENCES
[1] Ziv, J., A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEE

Trans. Information Theory, vol. IT-23, no. 3, pp. 337-343, May 1977.
[2] Ziv, J., A. Lempel. Compression of Individual Sequences via Variable Rate

Coding. IEEE Trans. Information Theory, vol. IT-24, no.5, pp. 530-536, Sep 1978.

ABOUT THE AUTHOR
Ass.Prof. Jordan Genoff, Department of Computer Systems, Technical University of

Sofia at Plovdiv, Phone: +359 32 659 729, Е-mail: jgenoff@tu-plovdiv.bg.

- IIIB.18-6 -

