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Abstract: The effect of initialization of Radial Basis Function (RBF) Neural Network (NN) with prior 
domain information is determining for generalization ability of the network. It defines the number of hidden 
units in a hidden layer in advance and minimizes the time of learning.  The paper describes how to create 
RBF NN simulator including prior domain information and how the initialization works on the final result. A 
task for technical diagnostics of objects with fuzzy domain is examined by moving casual centers of clusters 
and moving domain centers and widths.  
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INTRODUCTION 
Inductive learning methods such as artificial neural networks generally rely on large 

amounts of training data and require many training cycles to form concepts. One of 
encountered problems in these methods is an insufficient training example to achieve 
good generalization. The use of approximately correct domain parameters to initialize the 
learning algorithm prior to training has been shown to be effective in improving 
generalization in many cases [1], [5], [6]. Our main goal is to reduce the need for training 
data and to bias the learner towards a solution that fits with a domain expert’s knowledge. 
The effects on training time, network size, and generalization accuracy of RBF network 
initialized with prior domain knowledge in comparison to networks that start learning from 
tabula rasa configuration are significant. In RBF NN there is two phases of training – a 
hidden unsupervised phase and an output supervised phase. Our goal is to put hidden 
units near to expert’s domain and to perform supervised learning for hidden and output 
layers together.  

This paper is organized as follows: The next sections describe the RBF network 
architecture and two different strategies for initialization of hidden units. Then is given 
information about practical realization of program simulator and its implementation in 
technical diagnostics problems. 

 
RADIAL BASIS FUNCTION NEURAL NETWORK 
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Figure 1 – Radial basis function neural network 
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RBF neural networks are three (input, hidden, output) layered networks, which 

contain a set of locally responsive units in a hidden layer (Figure 1). Each hidden unit is a 
node with an RBF activation function. Every unit has two important parameters – the 
center and the width [5] and shall be taken in this paper as a Gaussian function. Nodes in 
output layer are linear and yield a weighted sum of its inputs. The number of input nodes is 

equal to the dimension p of the input vector ( )T

px ξξξ ,...,, 21= . The number of output nodes 

depends on the number k of classes we want to recognize. 

 The training data are given as a set of pairs {(xi,di):1≤i≤N}, where xi is the 
measurement input vector in Rp  and di is the corresponding target vector in RK. If xi 
belongs to the class k, then di is the vector consisting of 0 elements except the k-th 
element equal to 1. Using these training data in a procedure for determining the prior 

domain we can determine the number M of hidden units (M≤N) and initial values of their 

centers {ti:1≤ i≤M} and widths {σi:1≤ i≤M}.  

Let G(ξ:σ) be the Gaussian function with mean zero and the standard deviation σ. 
The j-th output of the Gaussian RBF network is expressed by 
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where x∈ Rp is an input vector, x  is the Euclidian norm of the vector x and wij is the 

weight parameter, which connect i-th hidden node with j-th output node. 
 
STRATEGIES FOR INITIALIZATION OF HIDDEN UNITS 
The hidden layer’s activation functions evolve slowly in accordance with some 

nonlinear optimization strategy, while the output layer’s weights adjust themselves rapidly 
through a linear optimization strategy. It is necessary to involve in the optimization of the 
hidden layer of the network some improvement by using different techniques [2]: 

 
Fixed centers randomly selected 
The location of the centers may be chosen randomly from the training data, which 

are distributed in a representative manner for the problem. Specifically, a normalized RBF 
centered at ti is defined as  
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where M is the number of centers and d is the maximum distance between the 
chosen centers. The standard deviation (i.e. width) of all the Gaussian RBF is fixed at 

M

d

2
=σ .        (3) 

Such a choice for the standard deviation σ avoids some extremes like too peaked or 
too flat gaussian function.  

 
Supervised method for center and width selection 
The centers of the radial-basis functions and all other free parameters of the network 

undergo a supervised learning process. For a gradient-descent procedure that represents 
a generalization of the LMS algorithm it is necessary to define the instantaneous value of 
the cost function 
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where N is the number of training examples and k is the number of classes. The error 
signal for i-th training datum at the j-th output node is defined by 

)( ijijij xFde −=  1≤i≤N,1≤j≤K,     (5) 

where dij is the j-th element of the target vector di.  

It is necessary to find the parameters wi j, ti and σi, so as to minimizeε. Let wi and ej 
are the corresponding vectors of weights and errors. The results are the following adaptive 
formulas [2]: 

Weights between hidden and output layers; 

∑
=

−=
N

j

iijj

i

nntxGne
nw

n

1

))(:)(()(
)(

)(
σ

∂

∂ε
    (6) 

)(

)(
)()1( 1

nw

n
nwnw

i

ii
∂

∂ε
η−=+  i=1, 2,..., M    (7) 

Positions of centers (hidden layer); 
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Widths of the functions (hidden layer); 
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The cost function ε is convex to linear parameters wi, but nonconvex with respect to 

the centers ti and widths σi and the search for the optimum values of ti and σi may get 
stuck at a local minimum in parameter space. For the initialization of the gradient-descent 
procedure, it is often desirable to begin the search in parameter space from a structured 
initial condition. It limits the region of parameter space to be searched to an already known 
useful area. Implementing an RBF network with prior domain selection helps to avoid 
falling in a local minimum. 

 
PRACTICAL REALIZATION OF THE SIMULATOR 
A program simulator [3], [4] is realized in Borland C++ and consists of four program 

modules. The first module prepares input data for simulation. They are number N of 
training data, their dimension p, number of classes, all input vectors, all target vectors and 
coordinate of cluster centers and widths. All data are normalized within the interval [0.1 , 
0.9]. They are stored in a file. 

The second module consists of three sub modules. The first sub module creates 
network architecture with arbitrary number of units in each layer. In dialog we determine 
the appropriate architecture depending on different strategies for initialization of hidden 
units. The initial data for the positions of the centers and the widths of the units in hidden 
layer are loaded from a file. The weight coefficients linking the hidden and the output 
layers are generated randomly. 

The second sub module trains neural network after reading the normalized data from 
the file. It optimizes the parameters and minimizes the sum of the mean square errors for 
all the outputs. 

The training continues until the criterion for damping of fluctuations of standard error 
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is satisfied or all epochs defined in advance are spent. It is possible to change the learning 
rate in the process of learning. We can save all the parameters of the trained network in a 
file in order to use them later with new data or to make an additional training. 

The last sub module evaluates the standard error of the trained network by using an 
entire training data.  

The third module graphically shows performance of the final results for better 
perceiving and understanding. 

The fourth module is designed for preparation of new data for classification. Their 
target vectors are unknown and the network responds are available after the test 
procedure. Such a sample is being classified into one of the existing state classes. 

 
REALIZATION OF DIFFERENT TYPE OF INITIALIZATION 
The design of an RBF neural network consists of determining the number of RBF 

functions in hidden layer, determining their initial centers and widths and finding the 
weights that connect them to the output nodes. It is trivial to place RBF on every given 
training pattern and then make the kernel function peak when that pattern or similar 
patterns are presented but this becomes practically impossible, when the number of the 
data to be trained is large. Sometimes when the data isn’t precise and even have a noise, 
it can cause over-fitting. Even when the number of centers is less and they are distributed 
in a representative manner for the problem, the learning is slowly and generalization error 
cannot fall under definite value. 

Clustering algorithm for input data is needed, like k-means algorithm or another but 
when a sample of one specific class is in the envelope of another class some faulty and 
erroneous results could be received. The clustering algorithm, which determines the 
number of hidden neurons, must take into account the attachment of the sample to a 
definite class as this would result in the accuracy and the time for training.   

The clustering algorithm below is appropriate for determining the number of the 
hidden units, their initial centers and widths [6]. This algorithm creates a group of samples 
belonging to the same class, which is enough discriminate from opposite classes. The 
realization is made in C++ and includes the following steps: 

 
1. Every training point is a different cluster; 
2. Randomly choose the label k=1,2,3…c for every cluster; 
3. Start from k=1; 
4. Search for cluster from the same class; 
5. Merge these two clusters and evaluate of the new centre; 
6. Evaluate the distance d between the new centre and the centre of the nearest 

cluster from an opposite class; 
7. Evaluate the distance between the new centre and the most outlying point of 

this cluster, which is a radius R of the cluster; 
8. If d>α R, where α=const than accept the merge from point 5 and continue from 

point 4, linking current k with the new created cluster and decreasing c=c-1. If 
this inequality is not true reject the merging and restore the two initial clusters, 
leave k and c without changing and continue from point 4. Repeat steps from 
4 to 8 for all the clusters and than increase k=k+1; 

9. Repeat steps 4 to 8 until k=c. 
 

Practically the range of α is [1, 3] because big values cause good accuracy but 
limitary reduction of clusters. 

This information is used for initialization of weights between input and hidden layer. 
Building of this links is a dynamic structure, which uses the number of neuron-source, the 
number of neuron-receiver and weighted link between them. The dynamic structure of 
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neuron connection is: 
 
neuron[i]- > struct a    struct connect 
{       { 
float state;     int nnumb; 
float potential;     float weight; 
float error;     struct connect*post; 
float radii;     }; 
struct connect*next; 
}; 
 
Every neuron[i] is connected to another neuron with number nnumb with weighted 

connection weight. The initial information for state, potential and error can be 0 when 
clustering of input data is not used, but radii is equal to some positive initial value when 
there is not cluster information or equal to the value of width, received after clustering 
procedure. Thus the region is localized easier and covered by Gaussian with calculated in 
advance parameters. 

 
PRACTICAL RESULTS 
The task is to classify different states of compressors. There are 7 different classes of 

state, which are distributed between good working order and different kinds of faulty 
operating. The measurement vector consists of monitor indicator values of the 
compressor. It serves for indirect evaluation of the state and has 24 symptoms. Some of 
them are the pressure and the temperature of the in-coming and out-coming gas and 
vibrations at many points of observation. 

The network size is 24-26-7, where 26 cluster centers are randomly selected from the 
training data set. They are distributed in a representative manner depending on the 
quantity of available data for every class. The width for every cluster is a constant. 
Network training involves adjusting the output weight, centre and width of each hidden 
cluster by gradient descent on the error surface – formulas (6)-(12). 

Graphical results for the dynamic of the learning process in a case with moving 
casual centers of clusters and moving domain centers and widths is shown at Figure 2: 
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Figure2: Random initialization of centers and widths by comparison with 
determinated by clustering method centers of domain and their widths 
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CONCLUSIONS AND FUTURE WORK 
The practical application of the developed software simulator in the technical 

diagnostics has led to the following conclusions: Adapting the position of centers of radial-
basis functions is beneficial when a minimal network configuration is required. The same 
performance on generalization can be achieved by using a larger RBF network – network 
with a larger number of fixed centers in the hidden layer, and only adapting the output 
layer of the network by linear optimization. 

The use of prior domain information improves learning speed, accuracy and results in 
smaller networks with sufficient training examples for concept learning. The randomly 
initialized network have produced an initial quick reduction in error but then not been able 
to converge to an optimal solution. Also, for randomly initialized networks, accuracy cannot 
improve as the number of local kernel functions used to initialize the network increased. 
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