
International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

Initialization of Radial Basis Function Neural Networks with Prior

Domain Information for Good Generalization

Dr. Ganka Kovacheva

Abstract: The effect of initialization of Radial Basis Function (RBF) Neural Network (NN) with prior
domain information is determining for generalization ability of the network. It defines the number of hidden
units in a hidden layer in advance and minimizes the time of learning. The paper describes how to create
RBF NN simulator including prior domain information and how the initialization works on the final result. A
task for technical diagnostics of objects with fuzzy domain is examined by moving casual centers of clusters
and moving domain centers and widths.

Key words: Radial Basis Function (RBF) Neural Networks, Initialization of RBF Neural Networks,
Application in Technical Diagnostics.

INTRODUCTION
Inductive learning methods such as artificial neural networks generally rely on large

amounts of training data and require many training cycles to form concepts. One of
encountered problems in these methods is an insufficient training example to achieve
good generalization. The use of approximately correct domain parameters to initialize the
learning algorithm prior to training has been shown to be effective in improving
generalization in many cases [1], [5], [6]. Our main goal is to reduce the need for training
data and to bias the learner towards a solution that fits with a domain expert’s knowledge.
The effects on training time, network size, and generalization accuracy of RBF network
initialized with prior domain knowledge in comparison to networks that start learning from
tabula rasa configuration are significant. In RBF NN there is two phases of training – a
hidden unsupervised phase and an output supervised phase. Our goal is to put hidden
units near to expert’s domain and to perform supervised learning for hidden and output
layers together.

This paper is organized as follows: The next sections describe the RBF network
architecture and two different strategies for initialization of hidden units. Then is given
information about practical realization of program simulator and its implementation in
technical diagnostics problems.

RADIAL BASIS FUNCTION NEURAL NETWORK

w i1

w M 1
F K (x)

w 1 1

F 1 (x)

G

G

ξ 1

ξ 2

ξ p -1

ξ p

G

Figure 1 – Radial basis function neural network

- IIIB.16-1 -

Administrator
- -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

RBF neural networks are three (input, hidden, output) layered networks, which

contain a set of locally responsive units in a hidden layer (Figure 1). Each hidden unit is a
node with an RBF activation function. Every unit has two important parameters – the
center and the width [5] and shall be taken in this paper as a Gaussian function. Nodes in
output layer are linear and yield a weighted sum of its inputs. The number of input nodes is

equal to the dimension p of the input vector ()T

px ξξξ ,...,, 21= . The number of output nodes

depends on the number k of classes we want to recognize.

 The training data are given as a set of pairs {(xi,di):1≤i≤N}, where xi is the
measurement input vector in Rp and di is the corresponding target vector in RK. If xi
belongs to the class k, then di is the vector consisting of 0 elements except the k-th
element equal to 1. Using these training data in a procedure for determining the prior

domain we can determine the number M of hidden units (M≤N) and initial values of their

centers {ti:1≤ i≤M} and widths {σi:1≤ i≤M}.

Let G(ξ:σ) be the Gaussian function with mean zero and the standard deviation σ.
The j-th output of the Gaussian RBF network is expressed by

),:()(
1

i

M

i

iijj txGwxF σ∑
=

−= (1)

where x∈ Rp is an input vector, x is the Euclidian norm of the vector x and wij is the

weight parameter, which connect i-th hidden node with j-th output node.

STRATEGIES FOR INITIALIZATION OF HIDDEN UNITS
The hidden layer’s activation functions evolve slowly in accordance with some

nonlinear optimization strategy, while the output layer’s weights adjust themselves rapidly
through a linear optimization strategy. It is necessary to involve in the optimization of the
hidden layer of the network some improvement by using different techniques [2]:

Fixed centers randomly selected
The location of the centers may be chosen randomly from the training data, which

are distributed in a representative manner for the problem. Specifically, a normalized RBF
centered at ti is defined as

Mi

ii tx
d

M
txG

,...,2,1

2

2

2
exp)(

=









−−=− , (2)

where M is the number of centers and d is the maximum distance between the
chosen centers. The standard deviation (i.e. width) of all the Gaussian RBF is fixed at

M

d

2
=σ . (3)

Such a choice for the standard deviation σ avoids some extremes like too peaked or
too flat gaussian function.

Supervised method for center and width selection
The centers of the radial-basis functions and all other free parameters of the network

undergo a supervised learning process. For a gradient-descent procedure that represents
a generalization of the LMS algorithm it is necessary to define the instantaneous value of
the cost function

∑∑
= =

=
N

i

K

j

ije
1 1

2

2

1
ε (4)

- IIIB.16-2 -

Administrator
- -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

where N is the number of training examples and k is the number of classes. The error
signal for i-th training datum at the j-th output node is defined by

)(ijijij xFde −= 1≤i≤N,1≤j≤K, (5)

where dij is the j-th element of the target vector di.

It is necessary to find the parameters wi j, ti and σi, so as to minimizeε. Let wi and ej
are the corresponding vectors of weights and errors. The results are the following adaptive
formulas [2]:

Weights between hidden and output layers;

∑
=

−=
N

j

iijj

i

nntxGne
nw

n

1

))(:)(()(
)(

)(
σ

∂

∂ε
 (6)

)(

)(
)()1(1

nw

n
nwnw

i

ii
∂

∂ε
η−=+ i=1, 2,..., M (7)

Positions of centers (hidden layer);

∑
=

− −−=
∂

N

j

ijiiijji

i

ntxnnntxGnenw
nt

n

1

2
)]()[())(:)((')()(2

)(

)(
σσ

∂ε
 (8)

)(

)(
)()1(2

nt

n
ntnt

i

ii
∂

∂ε
η−=+ i=1, 2,… M (9)

Widths of the functions (hidden layer);

∑
=

−−=
N

j

jiiijji

i

nQnntxGnenw
n

n

1

)())(:)((')()(
)(

)(
σ

∂σ

∂ε
 i=1,2,… M (10)

[][]Tijijji ntxntxnQ)(.)()(−−= (11)

)(

)(
)()1(3

n

n
nn

i

ii
σ

ε
ησσ

∂

∂
−=+ (12)

The cost function ε is convex to linear parameters wi, but nonconvex with respect to

the centers ti and widths σi and the search for the optimum values of ti and σi may get
stuck at a local minimum in parameter space. For the initialization of the gradient-descent
procedure, it is often desirable to begin the search in parameter space from a structured
initial condition. It limits the region of parameter space to be searched to an already known
useful area. Implementing an RBF network with prior domain selection helps to avoid
falling in a local minimum.

PRACTICAL REALIZATION OF THE SIMULATOR
A program simulator [3], [4] is realized in Borland C++ and consists of four program

modules. The first module prepares input data for simulation. They are number N of
training data, their dimension p, number of classes, all input vectors, all target vectors and
coordinate of cluster centers and widths. All data are normalized within the interval [0.1 ,
0.9]. They are stored in a file.

The second module consists of three sub modules. The first sub module creates
network architecture with arbitrary number of units in each layer. In dialog we determine
the appropriate architecture depending on different strategies for initialization of hidden
units. The initial data for the positions of the centers and the widths of the units in hidden
layer are loaded from a file. The weight coefficients linking the hidden and the output
layers are generated randomly.

The second sub module trains neural network after reading the normalized data from
the file. It optimizes the parameters and minimizes the sum of the mean square errors for
all the outputs.

The training continues until the criterion for damping of fluctuations of standard error

- IIIB.16-3 -

Administrator
- -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

is satisfied or all epochs defined in advance are spent. It is possible to change the learning
rate in the process of learning. We can save all the parameters of the trained network in a
file in order to use them later with new data or to make an additional training.

The last sub module evaluates the standard error of the trained network by using an
entire training data.

The third module graphically shows performance of the final results for better
perceiving and understanding.

The fourth module is designed for preparation of new data for classification. Their
target vectors are unknown and the network responds are available after the test
procedure. Such a sample is being classified into one of the existing state classes.

REALIZATION OF DIFFERENT TYPE OF INITIALIZATION
The design of an RBF neural network consists of determining the number of RBF

functions in hidden layer, determining their initial centers and widths and finding the
weights that connect them to the output nodes. It is trivial to place RBF on every given
training pattern and then make the kernel function peak when that pattern or similar
patterns are presented but this becomes practically impossible, when the number of the
data to be trained is large. Sometimes when the data isn’t precise and even have a noise,
it can cause over-fitting. Even when the number of centers is less and they are distributed
in a representative manner for the problem, the learning is slowly and generalization error
cannot fall under definite value.

Clustering algorithm for input data is needed, like k-means algorithm or another but
when a sample of one specific class is in the envelope of another class some faulty and
erroneous results could be received. The clustering algorithm, which determines the
number of hidden neurons, must take into account the attachment of the sample to a
definite class as this would result in the accuracy and the time for training.

The clustering algorithm below is appropriate for determining the number of the
hidden units, their initial centers and widths [6]. This algorithm creates a group of samples
belonging to the same class, which is enough discriminate from opposite classes. The
realization is made in C++ and includes the following steps:

1. Every training point is a different cluster;
2. Randomly choose the label k=1,2,3…c for every cluster;
3. Start from k=1;
4. Search for cluster from the same class;
5. Merge these two clusters and evaluate of the new centre;
6. Evaluate the distance d between the new centre and the centre of the nearest

cluster from an opposite class;
7. Evaluate the distance between the new centre and the most outlying point of

this cluster, which is a radius R of the cluster;
8. If d>α R, where α=const than accept the merge from point 5 and continue from

point 4, linking current k with the new created cluster and decreasing c=c-1. If
this inequality is not true reject the merging and restore the two initial clusters,
leave k and c without changing and continue from point 4. Repeat steps from
4 to 8 for all the clusters and than increase k=k+1;

9. Repeat steps 4 to 8 until k=c.

Practically the range of α is [1, 3] because big values cause good accuracy but
limitary reduction of clusters.

This information is used for initialization of weights between input and hidden layer.
Building of this links is a dynamic structure, which uses the number of neuron-source, the
number of neuron-receiver and weighted link between them. The dynamic structure of

- IIIB.16-4 -

Administrator
- -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

neuron connection is:

neuron[i]- > struct a struct connect
{ {
float state; int nnumb;
float potential; float weight;
float error; struct connect*post;
float radii; };
struct connect*next;
};

Every neuron[i] is connected to another neuron with number nnumb with weighted

connection weight. The initial information for state, potential and error can be 0 when
clustering of input data is not used, but radii is equal to some positive initial value when
there is not cluster information or equal to the value of width, received after clustering
procedure. Thus the region is localized easier and covered by Gaussian with calculated in
advance parameters.

PRACTICAL RESULTS
The task is to classify different states of compressors. There are 7 different classes of

state, which are distributed between good working order and different kinds of faulty
operating. The measurement vector consists of monitor indicator values of the
compressor. It serves for indirect evaluation of the state and has 24 symptoms. Some of
them are the pressure and the temperature of the in-coming and out-coming gas and
vibrations at many points of observation.

The network size is 24-26-7, where 26 cluster centers are randomly selected from the
training data set. They are distributed in a representative manner depending on the
quantity of available data for every class. The width for every cluster is a constant.
Network training involves adjusting the output weight, centre and width of each hidden
cluster by gradient descent on the error surface – formulas (6)-(12).

Graphical results for the dynamic of the learning process in a case with moving
casual centers of clusters and moving domain centers and widths is shown at Figure 2:

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0
50

0
10

00
15

00
20

00

casual_center

domain_center

Figure2: Random initialization of centers and widths by comparison with
determinated by clustering method centers of domain and their widths

- IIIB.16-5 -

Administrator
- -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

CONCLUSIONS AND FUTURE WORK
The practical application of the developed software simulator in the technical

diagnostics has led to the following conclusions: Adapting the position of centers of radial-
basis functions is beneficial when a minimal network configuration is required. The same
performance on generalization can be achieved by using a larger RBF network – network
with a larger number of fixed centers in the hidden layer, and only adapting the output
layer of the network by linear optimization.

The use of prior domain information improves learning speed, accuracy and results in
smaller networks with sufficient training examples for concept learning. The randomly
initialized network have produced an initial quick reduction in error but then not been able
to converge to an optimal solution. Also, for randomly initialized networks, accuracy cannot
improve as the number of local kernel functions used to initialize the network increased.

REFERENCES
1. Andrews R. and Geva S.: “On the effects of initializing a neural network with

prior knowledge”, ICONIP’99, Perth, Australia, vol.1, pp.251-256, 1999
2. Haykin S.: “Neural networks”, Mc Master University, 1994
3. Kovacheva G. and Ogawa H.: “Radial basis function classifier for fault

diagnostics”, ISICT’03, Dublin, Ireland, 2003
4. Kovacheva G. and Ogawa H.: “Incremental learning method for RBF classifiers”,

WISICT’04, Cancun, Mexico, 2004
5. Moody J. and Darken C.: “Fast learning in network of locally- tuned processing

units”, Neural Computation, 1, 1989
6. Musavi M., Ahmed W. and Chan K.: “On the training of Radial Basis Function

classifiers”, Neural Networks, 5, pp. 595-603, 1992

ABOUT THE AUTHOR
Major Assistant Professor Ganka Petkova Kovacheva, PhD, Department of Computer

Systems and Technology, Technical University of Varna, Phone: +359 52 622978, Е-mail:
gpp_k@mail.bg

- IIIB.16-6 -

Administrator
- -

