
International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

The Evolution of the JAVA Security Model

Nikolaj Cholakov, Dimo Milev

Abstract: In this paper the basic security features of the Java platform, including the language-level

security, the Java Virtual Machine-level Security, the sandbox model, and the Java Security APIs, are
discussed. In search of the proofs that Java is really secure and reliable, the main specialties and
advantages of these features are considered and summarized, with special attention to their evolution within
the dynamic and fast deployment of the Java platform.

Key words: Java, JSDK, Java Security, Security API, Security Model

INTRODUCTION
Since 1995, when Java was first presented, there has been strong and growing

interest around the security of the Java platform. Here are some of the most commonly
posed questions in this matter [2]: Is Java secure? Who is at risk? What are the risks?
How common are security breaches? Is this problem ever going to go away?

Of course there are no simple answers to these questions, but one thing is very
clear: nothing (including Java) is completely secure. A lot of hackers are permanently
trying to break out each security system, and they use more and more sophisticated ideas
and approaches. So software systems producers have also to improve their products
permanently, and make them more reliable, secure and proof to different kinds of attacks.

LAYOUT
From the technology provider's point of view, Java security includes two aspects [3]:
• Provide the Java platform as a secure, ready-built platform on which to run Java-

enabled applications in a secure fashion.
• Provide security tools and services implemented in the Java programming

language that enable a wider range of security-sensitive applications, for example, in the
enterprise world.

Both aspects are organically related and together they ensure the desired security
level for the Java platform itself and for all kinds of Java applications.

1. Language-level security

Overall security is enforced through a number of mechanisms, developed at different

times. The foundations of the Java security can be seen in some basic language features:
• Simplified and easy to use. Java is much simpler in comparison with other

languages like C++. Thus the burden on the programmer is smaller and so the probability
of making subtle mistakes is lessened;

• Strictly object-oriented. There are wrapper classes defined even for the simple
data types, and there can be no structures outside classes. Thus all security-related
advantages of the object-oriented paradigm can be used;

• Final classes and methods. This feature disallows subclassing when applied to
class definitions and disallows overriding when applied to method definitions, and prevents
the undesired modification of certain functionality;

• Strongly typed. Polymorphism is a very powerful object-oriented feature, but it
holds potential risks of masking hostile objects. Both the compiler and the runtime
checking disallow such possibilities, because no assignment can be made if object types
are incompatible;

• Automated memory management with no direct use of pointers and address
arithmetic. This feature disallows incorrect memory access and minimizes the probability

- IIIB.12-1 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

of memory leaks, unauthorized data access and runtime crashes;
• Clearly defined behavior to uninitialized variables. All heap-based memory is

automatically initialized. However, all stack-based memory isn't. So, all class and instance
variables are never set to undefined values, and all local variables must definitely be
assigned before use or the source compiler is obligated to give you an error.

• Strict exception-handling mechanism. When using a method, which potentially
can cause severe errors, the programmer is forced by the compiler to handle all possible
exceptions. Thus the behavior of the Java program is always predictable and the program
becomes more “fool-proof”;

2. Java Virtual Machine-level Security

The Java Virtual Machine is responsible for the execution of Java programs, and also

for the implementation of a very important part of the Java Security features:
• Bytecode verification. Java compilers produce platform-independent bytecode,

executed by the Java Virtual Machine. Compilers and a bytecode verifier ensure that only
legitimate Java bytecodes are executed. The bytecode verifier, together with the Java
Virtual Machine, guarantees language safety at run time;

• Dynamic class loading. The Class Loader finds and loads the byte codes for the
class definitions. Once loaded, they are verified before the creation of actual classes. The
Class Loader also ensures that the JVM isn't tricked into using false representations of the
core class libraries-ones that could break the Java security model. Finally, the Class
Loader provides separate name spaces for classes loaded from different locations, which
prevents untrusted classes to interfere with the running of other programs;

• Runtime safety checks. Because of the late binding provided by the JVM,
additional late (runtime) type checking is done of assignments and array bounds. Thus the
JVM ensures that only properly assignable operations are performed, and no access
outside correct array bounds can be realized;

• Control over the access to crucial system resources. Each running JVM has at
most one SecurityManager installed. The SecurityManager checks in advance every
statement and restricts the actions of a piece of untrusted code to the bare minimum;

• Access Controller and permissions. Applications cannot install their own
Security Managers, but it is possible to give them individual permissions to very specific
operations using the policytool program. With the AccessController class the programmer
can check if the user has permission to perform a given operation.

The software implementation of the JVM security features is known as "sandbox" in
which Java programs can run safely, without potential risk to systems or users. This
sandbox evolved seriously since its first version.

3. The evolution of the sandbox model

The evolution of the sandbox model is illustrated on figures 1-3 [3]:

Figure 1. The JDK1.0 Sandbox model

valuable resources

JVM

sandbox

remote codelocal code

- IIIB.12-2 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

The original sandbox model was deployed through the Java Development Kit (JDK),

and was generally adopted by applications built with JDK 1.0, including Java-enabled web
browsers. This model provided a very restricted environment in which to run untrusted
code obtained from the open network. The essence of the 1.0 sandbox model is that local
code is trusted to have full access to vital system resources (such as the file system) while
downloaded remote code (an applet) is not trusted and can access only the limited
resources provided inside the sandbox.

Figure 2. The JDK1.1 Sandbox model

JDK 1.1 introduced the concept of a "signed applet", as illustrated by the figure
above. In that release, a correctly digitally signed applet is treated as if it is trusted local
code if the signature key is recognized as trusted by the end system that receives the
applet. Signed applets, together with their signatures, are delivered in the JAR (Java
Archive) format. In JDK 1.1, unsigned applets still run in the sandbox.

Figure 3. The Java 2 Platform Sandbox Model

The Java 2 Platform sandbox model introduced the capabilities to enhance security
to very finely control access and implemented a new philosophy: applications run with
different permissions, no built-in notion of trusted code. The Java 2 Platform sandbox
ensures:

• Dynamic, extensible security model;
• Fine-grained access control to protect resources;
• Easily configurable security policy enforced by security manager;
• Easily extensible access control structure;
• Extension of security checks to all Java programs, including applications as well as

applets.

4. Java Security APIs

In addition to the language and virtual machine features already discussed, Java

technology has a number of APIs that provide classes useful for writing secure

valuable resources

JVM

Sandbox

untrusted remote code local code trusted remote code

valuable resources
JVM

sandbox

class loadersecurity policy

sandbox

sandbox
sandbox

local or remote code (signed or not)

- IIIB.12-3 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

applications. Some of them first came as optional packages but now are integrated into the
Java 2 SDK. These APIs provide a rich feature set, with support for a wide range of tasks:

• Java Cryptography Architecture (JCA) [1] is a framework for providing
cryptographic capabilities to Java programs. JCA includes support for message digests,
digital signatures, key pairs management, authentication and certificates. The design of
this framework follows the MVC (Model-View-Controller) model, which separates concepts
from implementation. The implementation is delivered from the security provider. JCA
comes with a set of algorithms provided by the Sun’s standard security provider, but there
is also a possibility for pluggable use of third party security providers;

• Java Cryptography Extension (JCE) is an extension of the JCA. JCE provides a
framework and implementations for encryption, key generation and key agreement, and
Message Authentication Code (MAC) algorithms. Support for encryption includes
symmetric, asymmetric, block, and stream ciphers. Secure streams and sealed objects are
also supported. The Java 2 SDK includes a standard JCE provider named "SunJCE",
which comes pre-installed and registered, and as in JCA, providers signed by a trusted
entity can be plugged into the JCE framework, and new algorithms can be added
seamlessly;

• Java Authentication and Authorization Service (JAAS) is a framework for user-
based authentication and authorization. JAAS implements a Java version of the standard
Pluggable Authentication Module (PAM) framework and can be used for two purposes:

- authentication of users, to reliably and securely determine who is currently
executing Java code, regardless of whether the code is running as an application, an
applet, a bean, or a servlet. JAAS authentication is performed in a pluggable, permitting
Java applications to remain independent from underlying authentication technologies;

- authorization of users to ensure they have the access control rights (permissions)
required to do the actions performed. JAAS policy extends the Java 2 policy with the
relevant Subject-based information. Permissions recognized and understood in Java 2 are
equally understood and recognized by JAAS. Although the JAAS security policy physically
resides separately from the existing Java 2 security policy, the two policies should be
treated as one logical policy;

• Java Secure Socket Extension (JSSE) enables secure Internet communications.
It provides a framework and an implementation for a Java version of the Secure Sockets
Layer (SSL), and Transport Layer Security (TLS) protocols and includes functionality for
data encryption, server authentication, message integrity, and optional client authenti-
cation. Using JSSE, developers can provide for the secure passage of data between a
client and a server running any application protocol, such as Hypertext Transfer Protocol
(HTTP), Telnet, or FTP, over TCP/IP. JSSE uses the same provider architecture defined in
the JCA.

• Java CertPath API comprises classes, methods, and interfaces to build and
validate an ordered list of certificates, referred to as certification paths (or certificate
chains). A Certificate Authority (CA) vouches the digital identity by signing the certificate
with the CA's private key. To verify a certificate's identity, the relying party should have a
trusted copy of the CA's public key. In the absence of such a trusted copy, a certificates
chain, the certification path, is needed, with each certificate vouching for the previous one
until a certificate the relying party implicitly trusts is found. Based on the validation results,
users can associate a public key with a subject. CertPath API also supports pluggable
provider architecture.

• Java Generic Security Services (JGSS) API contains the Java bindings for the
Generic Security Services API (GSS-API) - a uniform API for mutual authentication of the
client and the server and secure exchange of messages regardless of the underlying
technology. JGSS offers features similar to these of JSSE, but there are differences in the

- IIIB.12-4 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

underlying security mechanisms. JGSS uses Kerberos version 5 instead of SSL/TLS
protocols; the Communications API in JGSS is token-based instead of socket-based;
JGSS also uses Credential delegation and Selective encryption, which are unsuitable for
JSSE;

• XML security comprises XML Digital Signature API for parsing, generating, and
validating XML signatures according to the W3C Recommendations, and XML Digital
Encryption API – for standard set of APIs for XML digital encryption services. XML
encryption can be used to perform fine-grained, element-based encryption of fragments
within an XML document as well as encrypt arbitrary binary data and include this within an
XML document.

Usually some of the Security APIs are commonly used. For example JAAS
authentication is typically performed prior to secure communication using Java GSS-API.
Thus JAAS and Java GSS-API are related and often used together. Of course this is not
obligatory: it is possible for applications to use JAAS without Java GSS-API, and it is also
possible to use Java GSS-API without JAAS.

5. Java Security features evolution

Some of considered Java security features were introduced with the original version

of the JDK, other were included lately, but all of them evolved since their first version.
Typical changes include the addition of new interfaces, classes and methods; method
updates; improvements of the command-line security tools; provider enhancements, and
of course bug fixing.

Table 1 summarizes the evolution of some basic features in the Java security model:

Table 1. Changes in security features

Security Feature JDK
1.0

JDK
1.1

JDK
1.2

J2SDK
1.3

J2SDK
1.4

J2SDK
1.5

Language Security Features O + + + + +
Java Virtual Machine O + + + + +
Sandbox Model O + +
Signed content O + + + +
Security tools O + + +
Security policy O + +
Java Cryptography Architecture (JCA) O + + + +
Java Cryptography Extension (JCE) O + +
Java Authentication and Authorization
Service (JAAS) O +

Java Secure Socket Extension (JSSE) O + +
Java Certification Path API O +
Java GSS-API O

Legend: O : the feature is introduced
 + : the feature is enhanced

An important element of the security model advancing is the regular bug fixing and

known problem removing. But to keep the users informed about these problems and their
fixes is also very important. A chronology of security-related bugs and issues can be found
at [5]. An advanced search in this scope can be made using the Sun Alert Notifications at
[6].

- IIIB.12-5 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

CONCLUSIONS AND FUTURE WORK
With an eye on the facts mentioned above, the following conclusions can be drawn:
• The Java platform relies on powerful, dynamic and extensible security architecture.

This architecture is based on some strong and interconnected standards;
• The Java language features such as automatic memory management, garbage

collection, and range checking on strings and arrays help the programmer to write safe
code, and to keep more his attention to the logic of the program;

• Numerous security APIs, mentioned above, give the developers means to perform
wide range of security-related operations in their applications. The Java2 SDK comes with
standard security feature providers holding a set of built-in algorithms for many security-
related issues. At the same time the provider architecture, supported by these APIs, allows
user programs to use the same API, but with different providers plugged;

• The new releases of the JSDK come with numerous enhancements of existing
security features along with new ones; the evolution of the Java Security model advances
permanently;

• Every Java security feature, like the whole platform, is very well documented, and
the users can easily find actual information about new issues in this matter. The
developers can rely on the technology provider’s support and assistance at any time;

• Considering all facts mentioned above, the following final conclusion could be
formulated: the Java security model grows and improves permanently; the issues of this
evolution give the Java platform the opportunity to face the challenges of the today’s global
information environment.

REFERENCES

1. Knudsen, J. Java Cryptography, O’Reilly, 1998;
2. Wutka, M. Hacking Java. QUE, Indianapolis, 1998
3. Http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-spec.doc1.html
4. Http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
5. Http://java.sun.com/sfaq/chronology.html
6. Http://sunsolve.sun.com/pub-cgi/search.pl

ABOUT THE AUTHORS
Nikolaj Ivanov Cholakov, PhD, Department of Information Technologies, “St.st. Cyril

and Methodius” university of Veliko Turnovo, Phone: +359 62 649831, E-mail:
n.cholakov@uni-vt.bg

Dimo Milev Milev, Department of Information Technologies, “St.st. Cyril and Metho-
dius” university of Veliko Turnovo, Phone: +359 62 649831, E-mail: d.milev@uni-vt.bg

- IIIB.12-6 -

