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Abstract: The interactive method REF-LEX is designed to solve nonlinear Multiple Objective 
Programming Problems (MOPPs). Its basic idea is to use reference directions to search for better solutions 
according to the Decision Maker’s (DM’s) preferences and to use lexicographic bi-criterion subproblem for 
generating efficient solutions. The correctness of the method is presented in this paper on the base of 
properties of the generated solutions and some numerical test results as well. 
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INTRODUCTION 
Method REF-LEX was introduced in [2], [3]. In some sense it is inspired from the 

approach suggested in [6], [12]. 
The basic characteristics of the method can be summarized as follows. The method 

includes a dialog in terms of reference points consisting of aspiration levels representing 
desirable objective values for the DM. The search for the final solution is supported by 
providing a desired number of compromise solutions along a reference direction by 
automatically shifting the reference point. This gives the DM a wider selection of solutions 
and information about the behaviour of the problem and about its possibilities and 
limitations when compared to other methods based on reference points. Typically, they 
generate only one solution reflecting the preferences of the DM or shift the reference point 
artificially. In the REF-LEX method, the DM can specify the reference point in a rather 
loose way because candidate solutions along the reference direction are generated and 
one does not have to go as far as the original reference point. The flexibility of the method 
is important and the DM can decide how many candidate solutions to consider. The 
solutions are generated using a lexicographic scalarizing problem, which guarantees the 
efficiency of the solutions. The positive features of the new method include the natural 
form of dialog with the DM in terms of aspiration levels and the fact that the DM is in 
control of the method. No artificial parameters or concepts are employed and the DM can 
direct the search to any part of the efficient set according to his/her preferences. 

The base of the method and theoretical comparison with other methods can be found 
in [2], [3], [4]. and we shall not discussed it here. 

The rest of the paper is organized as follow. First, some basic definitions are given. 
The properties of computed solutions are presented after that and finally the results of 
computer testing are summarized. 

 
Formulation and Basic Definitions 

The learning-oriented method REF-LEX has been introduced for solving nonlinear 
multiobjective programming problems - MOPPs. 
The mathematical formulation of a nonlinear multiobjective optimization problem can be 
given as: 

,      subject to
})(),...,(),({max 21

Sx
xfxfxf k

∈                                                                        (1) 

where 
a) k (≥ 2) is the number of objective functions, 
b) fi: Rn→R  is a real-valued objective function for i∈ I = {1, 2, … , k}, 
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c) f(x)=(f1(x), f2(x),… fk(x))T is a vector of objective (function) values, or an objective 
vector, 

d) x=(x1,…,xn)T is an n-dimensional vector of decision variables, 
e) S⊂ Rn is a feasible set of decision variables formed by constraint functions,     
f) Rn and Rk are the decision space and the objective space, respectively and 
g) at least one of the objective or constraint functions is nonlinear.  

Here the notation “max” means the simultaneous maximization of all the objective 
functions.  

We assume that the objective functions are conflicting, that is, there exists no trivial 
solution to problem (1) and there is a real need to find the best compromise solution to the 
problem.  
It is often useful to know the best possible values for each objective function. These values 
form a so-called ideal point z* in the objective space. Its components are computed as  

 
.  allfor   ),(max* Iixfz iSxi ∈=

∈
 

 
Definition 1. A solution x∈S is efficient if and only if there does not exist another solution 
y∈S such that fi(y)≥ fi(x) for all i∈I and fj(y)> fj(x) for at least one index j. 

 
The solution is weak efficient if strong inequalities hold for each indices. 
 
Definition 2. A solution x∈S is properly efficient if it is efficient and there exists a positive 
constant M>0 such that for every index i and every solution y for which fi(y)>fi(x) there 
exists at least one index j∈I such that fj(y)< fj(x) and .
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Definition 3. A reference direction hd  is defined as hrh zfd −=  where rf  is a reference 
point and hz  is a solution chosen at the previous iteration h. 

The reference direction is projected in the set of efficient solutions by solving a series 
of single objective scalarizing problems. These problems are lexicographic. The DM 
chooses the best solution among the candidates produced and if the most satisfactory 
solution is found, the solution process stops. Otherwise, the chosen solution is set as the 
next current solution that will act as the starting point of the new search and the DM needs 
to set his/her new reference point. 

 In this learning-oriented method, the DM can experiment with different reference 
points. In this way, he/she can learn about the problem to be solved and the final solution 
will actually satisfy him/her. On the other hand, the search along the reference direction 
can be interpreted as a way of checking the feasibility of the DM’s preferences.  

 
The scalarizing problems to be solved are of the form 

,   subject to
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where lh

iw , are weighting coefficients at iteration h for i∈I and lr
jf , for j∈I  are components of 

different intermediate reference points along the reference direction. Problem (LEX) is 
solved in two stages. First, the weighted min-max problem is solved subject to the original 
constraints. This problem is nondifferentiable but it can be formulated as a differentiable 
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problem so that single objective optimizers assuming differentiability can be applied 
(assuming the original problem is differentiable). In this case, the problem to be solved is 
of the form 

.                 
  allfor   ))((    subject to

min 
**,

Sx
Iixfzw ii

lh
i

∈
∈≤− α

α

 

This so-called Tchebycheff problem has n+1 variables. If it has alternative optima, then in 
the second stage a linear combination of objective functions (i.e., the sum term in (LEX)) is 
minimized in the set of those solutions. This means that additional constraints are added to 
the feasible set S. They have the form 

,  allfor   ))(( **, Iixfzw ii
lh

i ∈≤− α  
 

whereα is the optimal value of α in the first problem.  Note that the objective function in the 
second optimization is used only to break ties in cases of alternative optima.  
 

CORRECTNESS OF THE METHOD 
First we show that the scalarizing problem produces Pareto optimal solutions and any 

Pareto optimal solution can be found. 
 
Theorem 1. The solution of problem (LEX) is Pareto optimal.  
 
Proof:  Let x*∈S be a solution of problem (LEX). Let us assume that it is not Pareto 
optimal. In this case there exists some other x´∈S such that ƒi(x’)≥ƒi(x*) for all i∈I and 

ƒj(x’)>ƒj(x*) for at least one index j. Because we have  ,0, >lh
iw   we get  
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** *))(())'((  is valid. Here we have a contradiction with x* being a 

solution of (LEX). Thus, x* is Pareto optimal. 
 
Theorem 2. Let x*∈S be Pareto optimal. Then there exists a positive weighting vector 
w∈Rk such that x* is a unique solution of (LEX). 
 
Proof: Let x*∈S be Pareto optimal. Let us assume that there exists no positive weighting 
vector w such that x* is a unique solution of (LEX). We know that **)( ii zxf <  for all i∈I and 
for all x∈S. Let us set *)(xff i

r
i = for i∈I and l=N. (In what follows, we ignore the index l.) 

Now we have  
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and problem (LEX) can be constructed. Obviously, we can find a value for α such that *x  is 
a feasible solution of the first part of (LEX) and we can denote the solution pair as (α*, x*). 
We have  

.  allfor   *))((* ** Iixfzw ii
h
i ∈−≥α  
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After simplifying, we have 
1
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If x* is not an optimal solution of (LEX), there exists another pair (α’, x’), where x’∈S, such 
that this pair is a solution of the lexicographic problem. This means that 

.  allfor   ))'(('* ** Iixfzw ii
h
i ∈−≥≥αα  

Using the expression for α* we receive     )'(*)( **** xfzxfz iiii −≥−  for all i∈I. In other 
words, we have ƒi(x’)≥ƒi(x*) for all i∈I. Because x* is Pareto optimal, we must have 
ƒi(x’)=ƒi(x*) for all i. In other words, the Tchebycheff problem has a unique optimal solution 
and, thus, (LEX) must have a unique solution.  

An advantage of problem (LEX) is that it does not employ any artificial parameters 
but still any efficient solution (including properly and improperly ones) can be generated by 
varying the reference point. This makes the method proposed suitable for solving 
nonlinear and possibly nonconvex multiobjective optimization problems. In other words, in 
this method the DM can direct the search in any part of the efficient set according to 
his/her preferences. 

 
NUMERICAL TESTING AND AN ILLUSTRATIVE EXAMPLE 
Test problems were mostly academical. Some of them are published in [1], [7]-[11]. 
The dimension of problems vary from 2 to 5 nonlinear objective functions, the feasible 

set was defined from 1 to 6 constraints (nonlinear and linear) and decision variables no 
more than 5. 

The experiments show that the method did work fine with test examples. Usually it 
was easy for the decision maker to find satisfying compromise solution. Only sometimes 
those functions whose values were allowed to worsen did worsen more than expected. 

The idea of using weight coefficients 1/L for indexes j such that aspiration level 
equals utopian (modified ideal point) value seemed to work fine too. This situation only 
occurred in tests when DM gave aspiration levels equal to utopian values. 

It seemed that if DM gave aspiration levels close to utopian value for some functions 
the method seemed to improve almost only the values of those functions while other 
function values could worsen a lot.  

In evaluation step it would be helpful if there existed one more option for DM to 
choose: going back to previous computed solution. The values of those functions which 
DM allows to increase do sometimes worsen more than expected. (Of course the same 
can be done by giving a new direction with the function values of previous solution as 
aspiration levels.)  

In all test examples the objective functions are to be MINIMIZED. 
Next we illustrate the REF-LEX method by solving a water quality management 

problem involving seven objective functions, three variables, one nonlinear constraint and 
box constraint. For details of the problem, we refer to Miettinen and Mäkelä, 1999 where 
the problem has been solved using three different methods.  

The problem describes the pollution problems of an artificial river basin. A cannery 
and two cities pollute the river and a park is located between the cities. The water quality is 
measured by dissolved oxygen (DO) concentration. The cannery and the cities already 
reduce the waste content but new treatment facilities are needed. However, their costs will 
reduce the investment return from the cannery and increase the tax rate in the cities. The 
three decision variables represent the treatment levels of waste discharge at the cannery 
and in the cities, and the nonlinear constraint restricts the DO level at the end of the river. 
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The first and the third objective functions describe the DO concentration in the cities 
and the second objective in the park whereas the fourth objective represents the percent 
return on investment at the cannery. The addition to the tax rate in the cities is modeled as 
the fifth and the sixth objective, respectively, and the last objective keeps the capacities of 
the new treatment facilities as close to their optimal level as possible. Note that the last 
three objective functions were originally to be minimized and their signs have here been 
changed. 

In Miettinen and Mäkelä, 1999, the general preferences of the DM are described as 
follows. The DO level in the cities and in the park should be at least 6.0 mg/l, the rate of 
return on investment at the cannery should be above 6.5%, the tax rates in the cities 
should be below $1.5/$1000 of assessed valuation, and the capacities of the new 
treatment facilities should be at most 20% from the optimal level. Note that the goals are 
not necessarily attainable simultaneously. The ideal point is here 
(6.34,6.79,6.60,7.50,0.00,        -0.96,-0.16). Next we solve the problem following the 
preferences and choices expressed in the reference. 

Following the reference, we start the solution process from the feasible point 
(0.41,0.45,1.00) and the corresponding objective vector z1 =(5.00,2.55,5.29,7.44,-0.12,-
11.37,-0.35). Here, for example, the tax rate in the second city is far too high and the DO 
concentration in the park is unsatisfactory. We use the aspiration levels specified as a 
basis for the first reference point. However, because the value of the fourth objective 
function is so good, we do not want to relax it too much and set the corresponding 
aspiration level as -7.0. Thus, the first reference point is fr = (6.00,6.00,6.00,7.00,-1.50,-
1.50,-0.20). We ask for five candidate solutions (i.e. N=5) in order to learn about the 
behavior of the problem.  

The first four candidate solutions are 1,1z = (5.23,3.26,5.52,7.35,-0.39,-5.87,-0.31), 2,1z = 
(5.41,3.77,     5.69,7.25,-0.71,-4.00,-0.28), 3,1z = (5.58,4.23,5.83.7.12,-1.12,-2.72,-0.24) 
and 4,1z = (5.74,4.70,5.98,       6.92,-1.73,-2.47,-0.23). It does not seem interesting to 
calculate the last candidate because the values of the other objectives are rather good but 
the value of the sixth objective does not seem to decrease enough. Thus, 4,1z  is selected 
as the current solution z2 and a new reference point fr = (6.00,5.00,6.00,6.50,-2.00,   -
1.70,-0.22) is set. Because the aspiration levels are close to the desired values, we 
generate only one candidate solution 1,2z = (5.97,4.83,6.02,6.40,-1.69,-1.70,-0.20). We set 
this solution as z3 and even though it is already relatively good, the DO concentration in 
the park should be better. A new reference point fr = (6.00,5.00,6.00,6.30,-2.00,-1.50,-0.22) 
is specified. When one candidate solution is generated, we get 1,3z = (6.00,4.97,6.06,6.28,-
1.93,-1.50,-0.22), which is selected as the final solution. The corresponding decision 
variable values are (0.85,0.87,0.81). 

When comparing the solution obtained to those mentioned in Miettinen and Mäkelä, 
1999, we can say that we found a very good solution. The best solution found in the 
reference is (6.01,5.00,6.07,6.26,-1.98,        -1.54,-0.22). In our solution with REF-LEX, we 
managed to improve tax rates in both the cities without sacrificing too much in the other 
objectives. As far as computational cost is concerned, only 233 function evaluations were 
needed. Besides, REF-LEX obeyed the preferences expressed in the form of reference 
points very well and the DM could feel that his/her hopes were reflected in the solutions 
obtained. 
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CONCLUSION 
In this paper we show that the method REF-LEX generates only efficient solutions 

and that every efficient solution can be generated by it at some iteration. In other words, 
the whole efficient set can be successively computed. 

Also, as the numerical experiments show, the method seems to be flexible and well 
represents the DM’s preferences. It can be used for solving nonconvex nonlinear MOPPs 
due to used lexicographic subproblem. 
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