
International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

Constructing reusable Web components using JavaScript objects

Nikolaj Cholakov

Abstract: The efficiency of the Web applications development process can be increased significantly

with the usage of reusable components, working not only on the server, but also on the client. In this article a
clientside TreeView component is presented, intended for use in JSP pages as well as in “pure” DHTML
pages. The realization is based on the JavaScript language’s object-oriented capabilities, and supports tree-
like presentation of textual and graphical data with possibilities for expanding/collapsing and element
selection with clientside event handling.

Key words: Web programming, reusable components, Java Script , Java, JSP

INTRODUCTION
The development of Web applications becomes much more effective and fast when

the developer can rely on a wide range of reusable components. These components must
be specialized, diverse, and easy to use and must have a common interface. It is also an
advantage if they are platform independent.

One of the most important questions arising here is where should these components
be used: on the server or on the client? If the Web application consists of dynamic pages
only, obviously this should be a set of serverside components. But this will be very limiting
– they could not be used for clientside scripting. On the other side these components
should not be entirely clientside oriented, because then their use in dynamic pages will not
be enough effective. A good decision here will be the creation of modular, platform
independent serverside components which can get their content from different sources –
databases, files or network connections, but at the same time their interface part can be
used from clientside scripts.

There is another important problem concerning the management of the components.
Often they are interactive, and when the user operates with the interface of the
component, it changes its look, contents or behavior. To do this, the component has to
handle the events fired from the user actions, and this handling can be done on the client
or on the server, and more flexibility here can be achieved if both variants are realized.

LAYOUT
The Java Server Pages (JSP) specification provides a good possibility for the

construction of such components with the JSP custom tag libraries. A component can
consist of one or several JSP tags with the necessary set of attributes, forming the
contents and the properties of the component. The rendering of the component on the
user’s page however should not be done directly. A better way is to use clientside scripts
to construct the resulting HTML page, because these scripts could be used independently
and thus a pure clientside version of the component can be made. JavaScript is a good
choice for this purpose – simple, powerful and object-oriented.

Structuring information in a tree-like manner is a very common approach since it is
natural and easy to deal with for both users and developers. Most of the environments for
Graphical User Interface (GUI) applications include some form of a TreeView component,
but there are difficulties for the web developers, because HTML lacks direct support for
tree structures. As an implementation of the shortly described approach a Web component
of type TreeView will be presented. It offers an easy way to construct fully functional
classical tree structures in Web pages.

The following functionality is expected from a TreeView element:
• Presentation of textual and graphic data within a clearly defined and properly

displayed tree structure;
• Expansion and contraction of tree nodes triggered by the end-user;

- IIIA.26-1 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

• Support for tree element selection, firing an event holding some kind of data;
• Handling of toggling and selection events;
• Different look for expanded, collapsed and selected elements.
The first thing to do is to construct the data structure of the TreeView component. It

comprises a list of tree nodes on its top level. Each tree node in turn is composed of other
tree nodes and tree leaves. The latter cannot contain other nodes. There is no top-level,
root node by default. If there is only one node on the top level, that node in effect will be a
root node. The data contents of every node and leaf are arbitrary, but typically it will be
some text and/or images.

This article will not discuss particularly issues related to the construction of the data
in the tree. As mentioned above, the data can be taken from different sources on the
server, most frequently – a database. JSP custom tags give a good means to do this. The
main tag starts the construction. Using the attributes of the main tag, the programmer can
specify parameters concerning the whole component:

• name - the name of the component. There can be multiple TreeViews on a single
Web page, and they must have different names;

• manageOn – determines where events triggered from the end-user action will be
handled: on the server or on the client;

• selectionMode – allows the programmer to determine whether the selection
feature will be allowed for nodes, leaves or both;

• onSelect – the name of the function (serverside or clientside) which contains the
selection event handler;

• allowReselect – if true, allows multiple consecutive selection events on a single
element;

• model – represents Java object, containing some kind of data model of the entire
tree – for example a javax.swing.tree.TreeModel object. This is one of the possible ways to
specify the data contents of the tree. The other way is to use separate JSP tags for each
node and leaf; then the data for an element is in the body of the corresponding tag. If a
model object is specified, the whole TreeView component consists of the tree tag only;
otherwise the tree structure is specified through nested tags – one for the tree, and
individual tags for each node and leaf.

In both cases a special render class renders the tree. This class constructs the HTML
page containing the tree by creating several JavaScript objects. These objects contain all
necessary fields and methods to cover all functionality of the tree. The main object
presenting the whole tree is called Tree; its structure is shown in Table 1. Each tree
element is presented with a TreeItem object (Table 2). Two helper objects are also defined
– TreeItemChild and TreeItemIndent, with very simple structure. TreeItemChild represents
a child of a tree element and contains two fields: the id number of the child and its type.

Table 1. Tree object elements

Element Description
Fields
name The name of this tree

items An array containing all elements of this tree, presented as
TreeItem objects

lineHeight The tree elements height in pixels
selected The id of the currently selected element
selectAction The name of the function handling the selection event
allowReselect Boolean value indicating whether the reselection of an

- IIIA.26-2 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

element is allowed

allowMultiple Boolean value indicating whether multiple selection of tree
elements is allowed

multipleSelection An array containing id numbers of all currently selected
elements

Methods
addItem() Adds a tree item to the items array
render() Renders the entire structure of the tree

rearrange() Rearranges the visible structure of the tree (needed for
some browsers only)

refresh() Redraws the visible structure of the tree after toggle
operation

refreshSubTree() Redraws the visible structure of a sub tree
refreshNode() Redraws the contents of a node
scrollWindow() Scrolls the browser window to a new position
select() Performs element selection
changeImage() Changes the current image of a tree element

Table 2. TreeItem object elements

Element Description
Fields
id The id number of this tree element
type The type of the element: node or leaf
parent The id number of the parent element
content The content of the element in normal state
selContent The content of the element in selected state
expCotent The content of the element in expanded normal state
selExpContent The content of the element in expanded selected state
image The image of the element if any
toggleImage The image used to toggle this element

expandByCaption Boolean value indicating whether the element can be
toggled by its caption

status The current status of the element: expanded / collapsed

visible Boolean value indicating whether the element is currently
visible

children An array containing all children of this element presented
as TreeItemChild objects

indents An array containing all indents of this element, presented
as TreeItemIndent objects

Methods
addChild() Adds a child to the children array
addIndent() Adds an indent to the indents array

TreeItemIndent represents an indent image for an element and contains only the

name of the indent image.
The constructor function of the Tree object expects initial values for the following

fields: name, lineHeight, allowReselect, allowMultiple. The “items” array of the Tree object
contains all top-level elements of the tree as TreeItem objects. After the creation of every

- IIIA.26-3 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

top-level element object it is added to the “items” array using the addItem() function. The
meanings of the other fields are obvious.

The constructor function of the TreeItem object expects initial values for the following
fields: id, parent, type, content, selContent, expContent, selExpContent, image,
toggleImage, expandByCaption, and status. Thus the content of this element for its four
possible states is specified. Typically a tree element contains an image, specified with the
“image” field followed by text data, but this is not obligatory: for example the data can
contain other images. The “toggleImage” field specifies the image situated before every
element and used to expand and collapse its contents. Typically this is an icon containing
plus or minus signs, depending on the current state (See figure 1). The “status” field holds
the current state of an element: expanded or collapsed. The initial state of a node can be
specified with the “status” parameter of the constructor function.

The “children” array of every node contains all direct children of this element,
presented as TreeItemChild objects. The array is constructed using the addChild()
function. Of course leaves do not contain any children.

The exact display of the tree depends upon the defined style, but usually, child nodes
and leaves appear indented to the right of parent nodes. The “indents” array contains all
indent images, situated before each element and forming its indent. Typically two indent
images are used: blank space or vertical line, connecting all direct children of an element
(See figure 1). The “indents” array is constructed using the addIndent() function.

Figure 1. A sample TreeView component

Once the structure of the tree is created, the render() and refresh() functions of the

Tree object has to be called to visualize the tree. The structure is drawn sequentially top to
bottom and left to right where child nodes appear on the right and under parent nodes. But
the visible part of the tree will change after each expand or collapse operation. That is why
each tree element is situated in a positioned HTML box, depending of the client’s browser.
For DOM supporting browsers the DIV container is used, but for Netscape 4.x for example,
the LAYER element is required.

A tree element can have totally different content in each of the four possible states,
and only one of these contents can be visible at a time. When the user expands collapses
or selects an element, the state of this element changes and the corresponding content
becomes visible. To make this possible, the render() function places each content in a
separate HTML container. Then for showing or hiding a container, the style properties of
this content are manipulated: for DOM supporting browses – the “display” property, for
others – “visibility” and “position”.

The render() function constructs and writes out the whole HTML structure of the tree.
Then the refresh() function determines all initially visible elements and makes all

- IIIA.26-4 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

necessary style changes. Some of the older browsers require absolute positioning of the
elements, and the rearrange() function is intended for that purpose.

Every expanding or collapsing operation changes the visible structure of the tree.
Therefore the refresh() function has to be called to update the tree. But to avoid needless
operations only the affected part of the tree is refreshed using the helper functions
refreshSubTree() and refreshNode(). Also when the browser window content changes,
some smart window scrolling helps the user to see better what happens on the page. This
is done (if necessary) by the scrollWindow() function after each operation.

The TreeView component also supports the notion of node and/or leaf selection.
When an element is selected, its content may change and an event may be triggered. This
is determined by the select() function. For example if en element is already selected,
reselecting is not allowed, and the user tries to select the element again, this action is
simply ignored. If an event is triggered, it can be handled on the client or on the server. In
both cases a string containing arbitrary data is associated with this element, and passed to
the event handler.

To fully define the look of the tree, the programmer must specify how a node looks
like, how a leaf looks like, what images to use to draw the tree structure – images are
needed for lines, for the expanded and collapsed states of a node, and for spacing. All this
can be done using different style templates on the server. Finally all the information is
passed to the JavaScript objects. If nothing is specified, the look of the tree is very simple
– just the content of the elements with the default font, color and background for the page.

The following code fragment demonstrates how Tree and TreeItem objects can be
used to construct and render the tree from Figure1:

swing = new Tree('swing',16,'true','false','false');
…
swing.addItem('d1', 'd1.4', 'node',
 '<table cellspacing=0 cellpadding=0 border=0>
 <tr>
 <td nowrap></td>
 <td nowrap class=“f10”>
 JTree</td>
 </tr>
 </table>',
 '<table cellspacing=0 cellpadding=0 border=0 bgcolor="#e2e2e2">
 <tr>
 <td nowrap> </td>
 <td nowrap class=“f10”>
 JTree</td>
 </tr>
 </table>',
 '<table cellspacing=0 cellpadding=0 border=0>
 <tr>
 <td nowrap></td>
 <td nowrap class=“f10”>
 JTree</td>
 </tr>
 </table>',
 '<table cellspacing=0 cellpadding=0 border=0 bgcolor="orange">
 <tr>
 <td nowrap></td>
 <td nowrap class=“f10”>
 JTree</td>
 </tr>
 </table>', 'images/minus_middle.gif', 'images/plus_middle.gif','true','false');

swing.items['d1.4'].addIndent('space');

- IIIA.26-5 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

…
swing.render('images/line.gif',16,16,'images/space.gif',5,10);
swing.refresh();

Because the code is too big to be presented here fully, only the construction of the

tree called “swing” and the node with caption “JTree” are shown. First of all the Tree object
is created, with the given name and element height 16 pixels. Then all the elements of the
tree are added to the structure one by one. The four HTML tables represent the four states
of the node. They do not differ much: only by the background color; but there are no
limitations and the four states can be completely different. After the addition of every
element to its father element, the indents of the element are assigned. In this case the
“Jtree” element has only one indent and it is a space, but the “Fields” element for example
has two indents: a space and a line.

At the end the whole tree is rendered and only elements with currently expanded
parents remain visible. The picture on figure 1 does not show the initial state of the tree.
The “JTree” node has been expanded and then selected, and because of that its
background color is different.

CONCLUSIONS AND FUTURE WORK
There are many popular tools and languages for Web programming both on the client

and on the server side. They provide great functionality and diversity of tools. HTML and
its extensions provide a powerful means for interface design, but they still lack the uniform
integrated user experience that traditional desktop applications enjoy.

Reusable components, if properly designed and constructed, may bring Web
development to the familiar, long-time proven programming style of desktop GUI
programming - developers can work with controls having properties and responding to
events. To reach this goal, the features of the server-side and client-side programming
must be integrated into a common framework, so that the development of Web
applications becomes easy, fast and much more effective.

REFERENCES
1. Eckel, B. Thinking in JAVA. Prentice Hall, New Jersey, 2001.
2. Ladd, E., J. O’Donnel. Using HTML4, XML and Java. QUE, Indianapolis, 1998

ABOUT THE AUTHOR
Nikolaj Cholakov, PhD, Department of Information Technologies, “St.st. Cyril and Me-

thodius” university of Veliko Turnovo, Phone: +359 62 649831, E-mail: n.cholakov@uni-
vt.bg

- IIIA.26-6 -

