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Abstract: This paper introduces a flexible method for finding a solution to the traveling salesman 
problem using a genetic algorithm. The traveling salesman problem comes up in different situations in out 
world. It is a special kind of optimization problem. There had been many attempts to address this problem 
using classical methods, such as integer programming and graph theory algorithms with diffrenet success 
The solution, which this paper offers, includes a genetic algorithm implementation in order to give a maximal 
approximation of the problem, modifying a generated solution with genetic operators.  
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INTRODUCTION 
The genetic algorithms are an optimization technique based on natural evolution [1]. 

They include the survival of the fittest idea info a search algorithm which provides a 
method of searching which does not need to explore every possible solution in the feasible 
region to obtain a good result. Genetic algorithms are based on the natural process of 
evolution. In natureq the fittest individuals are most likely to survive and mate; therefore 
the next generation should be fitter and healthier because they were bred from healthy 
parents. This same idea is applied to a problem by first ‘guessing’ solutions and then 
combining the fittest solution to create a new generation of solutions which should be 
better than the previous generation. We also include a random mutation element to 
account for the occasional mishap in nature. 

The genetic algorithm process consists of the following steps [1]: 
1. Encoding 
2. Evaluation 
3. Crossover 
4. Mutation 
5. Decoding 

A suitable encoding is found for the solution to our problem so that each possible 
solution has unique encoding and the encoding is some form of a string. The initial 
population is then selected, usually at random though alternative techniques using 
heuristics have also been prpposed. The fitness of each individual in the population  is 
then computed that is, how  well the individual fits  the problem and whether it is near the 
optimum compared to the other individuals in the population. This fitness is used to find  
the individual’s probability of crossover. If an individual has a high probability (which 
indicates that it is significantly closer the optimum than the rest of its generation) then it is 
more likely to be chosen to crossover. Crossover is where the two individuals are 
recombined to create new individuals which are copied into the new generation. Next 
mutation occurs. Some individuals are chosen randomly to be mutated and then a 
mutation point is randomly chosen. The character in the corresponding position of the 
string is changed. Once this is done, a new generation has been formed and the process 
is repeated until some stopping criteria has been reached. At this point the individuals 
which is closest to the optimum is decoded and the process is complete. 
 

WHY DO WE USE GENETIC ALGORITHM  
The above-formulated problem  The genetic  algoritms are used for solving complex 

problems such as NP-hard problems [2]. A typical example of such problem is the traveling 
salesman problem. The genetic algoritms can be used in teaching different machines such 
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as robots and simple evolving programs. They can also be used in creating pictures and 
music. 

One of the great advantages of the genetic algoritm is the hing level of parallelism 
because of whish the programs are very easy to apply [2]. Once created, a genetic 
algoritm with small changes can be adjusted to solve a completely different problem. The 
choise of coding technique and calculation of fitness function can be very complicated and 
difficult. 

The main advantage of the genetic algoritms is that they can found a feasible 
solution for a very short time. 

 
POPULATION 
Population is a combination of chromosomes. In our program to present the 

population we use array of 1002 chromosomes. The thousand and first chromosome 
stores the worst tour. The name of the array is population. 

Population: array[0 1001] of TChromosome; 
For each chromosome we calculate the length that is coded into it, actually this is the 

fitness of the tour. It is stored in the next array: 
popFitness: array[ 0 .. 1001] of Real; 

Now we know that the tour with index I has a fitness popFitness[i]. 
The maximum number of towns is 32. The current number is stored in the variable 

townCount. In the same, way the number of populations – popCount. In the process of 
mutation, we use the coefficient MutInd. 

 
GENETIC OPERATORS FOR RECOMBINATION 
Two of the main problems that occur was choosing proper methods of crossover and 

mutation. We have implemented two types of crossover – cycle crossover and a custom 
one [8]. The user can choose which one to use in the calculation. Let us take a closer look 
at the Cycle crossover. 

First of all it fits perfectly to the way our tour is represented in the chromosome. For 
example if our tour is  

Tour = 1234 
This means that we go from city 1 to city 2 to city 3 to city 4.Unlike other methods of 

crossover here we do not pick a crossover point at all. We choose the first gene from one 
of the parent chromosome.If our parents are 

parent1 = 12345678 
parent2 = 85213647 

 
say we pick 1 from parent 1, 

child = 1******* 
 

We must pick every element from one of the parents and place it in the position it was 
previously in. Since the first position is occupied by 1, the number 8 from parent2 cannot 
go there. So we must now pick the 8 from parent1. 

child = 1*******8 
 

This forces us to put the 7 in position 7 and 4 in position 4, as in parent1. 
child = 1**4**78 
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Since the same set of position is occupied by 1,4,7,8 in parent1 and parent2, we 
finish bu filling in the blank positions with the elements of those positions in v2. Thus 

 
child 1 =  15243678 

 
and we get child2 from the complement of child1. 

This type of crossover ensures that each new created chromosome is legal.A 
chromosome is legal if it is constructed according to the requirements of the salesman 
problem.In this crossover notice that it is possible for us to end up with the offspring being 
the same as the parents. This is not a problem since it will usually occur if parents have 
high fitness, in which case, it could still be a good chance. 

If we want to solve this problem or other like not getting trapped in a local optimum 
we could use mutation. Due to the randomness of the process we will occasionally have 
chromosomes near a local optimum but none near the global optimum. Therefore the 
chromosomes near the local optimum will be chosen to crossover because they will have 
the better fitness and there will be very little chance of hiding the global optimum. So 
mutation is a completely random way of getting to possible solutions that would otherwise 
not be found. 

Mutation is performed after crossover. The mutation index (MutInd) must decide 
weather to perform mutation on this child chromosome or not. We then choose a point to 
mutate and switch that point. For instance, in our example we had 

child = 12345678 
 

If we choose the mutation point to be gene three and 7, the child would become 
child =  12745638 

 
We simply switched the places of genes 3 and 7.Another mutation that takes place is 

inverting a subtour in our child chromosome.Let us have the chromosome 
child = 12345678 

 
And choose the same mutation points 3 and 7.The subtour between these tow point 

is switched in reverse order 
child = 12765438 

 
After the mutation process the program makes a strict  verification of the 

chromosome. If it is not legal then the chromosome is ignored. 
The idea of the traveling salesman problem is to find a tour of a given number of 

cities, visiting each city once and returning to the starting city where the length of this tour 
is minimized. 

The product  finds a solution to the traveling salesman problem. For this purpose we 
use cities, chromosomes and populations. Each city is represented by an object of class 
TCity. The declaration is:  TCity=class( TObject );  Name:String;  x,y: Integer;  end;    

Each city is situated  on coordinates (x, y) on the map. In the working process a 
defined number of cities are being created. Then the program solves the traveling 
salesman problem for these cities. The combination of cities is stores into a object 
collection citylist.It consists of objects of class TCity. 

A tour or a chromosome represents a succession of indexes of cities. An index of 
obect city in the collection citylist is the same as the index of the city. A tour contains 
variable of type TChromosome.                          TChromosome=array[0 .. 32 ] of Integer; 

This is an array of 32 elements, each one has an integer value. Let M is a variable of 
type TChromosome:                                      Var M:TChromosome;  
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Then the tour starts from city with index M[1], continues to city with index M[2]. The 
maximum number of cities is 32, which is the length of the array. 

 
FITNESS FUNCTION 
The Purpose of the fitness function is to decide if a chromosome is good how good it 

is [4]. In the traveling salesman problem the criteria for good chromosome is it’s length. 
The longer the tour that is coded, the better the chromosome is.  Calculation takes place 
during the creation of the cromosomes. Each chromosome is created and then it’s fitness 
function is calculated. The length of the chromosome is measured in pixels by the scheme 
of the tour. 

∑
=

=
towncount

i

itchromosomefitness
1

_ ’ 

where towncount is the number of cities in population, et ti is the distance between two 
cities. 
 

BASIC FUNCTIONS USED IN THIS PRODUCT 
In this product were used sixteen basic functions and procedures in order to create a 

completely working program.  
 

2.1 DrawCity 
2.2 ShowCities 
2.3 DrawChromosome 
2.4 GenerateTownSet 
2.5 CreateTown 
2.6 GetClick 

2.7 Mutate 
2.8 CleaUp 
2.9 SaveToText 
2.10 Sort 
2.11 Image1Mouse

Move 

2.12 seTownCountChange 
2.13 TownKeyPress 
2.14 CreatePopulation 
2.15 TestCrossOver 
2.16 CrossOver 

 
INTERFACE 

The interface [Fig.1] is Windows Forms oriented, showing the current result at the 
moment they are calculated. In this order one of the stop criteria is that the user can 
terminate the calculations if he finds a feasible solution. 

 
Fig. 1 

The options screen [Fig.2] allows us to change the parameters of the genetic 
algorithm. We can change the mutation, inversion, and transposition coefficients. 
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Fig. 2 
CONCLUSIONS AND FUTURE WORK 

Genetic algorithms appear to find good solutions for the traveling salesman problem, 
however it depends very much on the way the problem is encoded and which crossover 
and mutation methods are used. It seems that the methods that use heuristic information 
or encode the edges of the tour perform the best and give good indications for future work 
in this area. 

Overall, it seems that genetic algorithms have proved suitable for solving the traveling 
salesman problem. As yet, genetic algorithms have not found a better solution to the 
traveling salesman problem that is already known, but many of the already known best 
solutions have been found by some genetic algorithm methods also. 

It seems that the biggest problem with the genetic algorithm devised for the traveling 
salesman problem is that it is difficult to maintain structure from the parent chromosomes 
and still end up with a legal tour in the child chromosomes. Perhaph a better crossover or 
mutation routine that retains structure from the parent chromosomes would give a better 
solution that we have already found for some traveling salesman problems. 

Random distance between towns 

      
   Fig. 3      Fig. 4 
The algorithm finds a good solution when there are 30 cities [Fig.1, Fig.2] when the 
coefficients of inversion and transposition has lower values. When there are less cities 
[Fig.3, Fig.4], coefficient’s influence is smaller. When the distance between cities is 
constant, the dependences are the same [Fig.5, Fig.6]. 
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Constant distance between towns 

    
   Fig. 5      Fig. 6 

Coefficient of mutation 

  
   Fig. 7      Fig. 8 
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