
International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

Genetic operators crossover and mutation in solving the TSP problem

Milena Karova Vassil Smarkov Stoyan Penev

Abstract: This paper introduces a flexible method for finding a solution to the traveling salesman
problem using a genetic algorithm. The traveling salesman problem comes up in different situations in out
world. It is a special kind of optimization problem. There had been many attempts to address this problem
using classical methods, such as integer programming and graph theory algorithms with diffrenet success
The solution, which this paper offers, includes a genetic algorithm implementation in order to give a maximal
approximation of the problem, modifying a generated solution with genetic operators.

Keywords: genetic algorithm, TSP, traveling salesman problem, constraints, optimization,
approximation, selection, genetic operator, crossover.

INTRODUCTION
The genetic algorithms are an optimization technique based on natural evolution [1].

They include the survival of the fittest idea info a search algorithm which provides a
method of searching which does not need to explore every possible solution in the feasible
region to obtain a good result. Genetic algorithms are based on the natural process of
evolution. In natureq the fittest individuals are most likely to survive and mate; therefore
the next generation should be fitter and healthier because they were bred from healthy
parents. This same idea is applied to a problem by first ‘guessing’ solutions and then
combining the fittest solution to create a new generation of solutions which should be
better than the previous generation. We also include a random mutation element to
account for the occasional mishap in nature.

The genetic algorithm process consists of the following steps [1]:
1. Encoding
2. Evaluation
3. Crossover
4. Mutation
5. Decoding

A suitable encoding is found for the solution to our problem so that each possible
solution has unique encoding and the encoding is some form of a string. The initial
population is then selected, usually at random though alternative techniques using
heuristics have also been prpposed. The fitness of each individual in the population is
then computed that is, how well the individual fits the problem and whether it is near the
optimum compared to the other individuals in the population. This fitness is used to find
the individual’s probability of crossover. If an individual has a high probability (which
indicates that it is significantly closer the optimum than the rest of its generation) then it is
more likely to be chosen to crossover. Crossover is where the two individuals are
recombined to create new individuals which are copied into the new generation. Next
mutation occurs. Some individuals are chosen randomly to be mutated and then a
mutation point is randomly chosen. The character in the corresponding position of the
string is changed. Once this is done, a new generation has been formed and the process
is repeated until some stopping criteria has been reached. At this point the individuals
which is closest to the optimum is decoded and the process is complete.

WHY DO WE USE GENETIC ALGORITHM
The above-formulated problem The genetic algoritms are used for solving complex

problems such as NP-hard problems [2]. A typical example of such problem is the traveling
salesman problem. The genetic algoritms can be used in teaching different machines such

- IIIA.20-1 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

as robots and simple evolving programs. They can also be used in creating pictures and
music.

One of the great advantages of the genetic algoritm is the hing level of parallelism
because of whish the programs are very easy to apply [2]. Once created, a genetic
algoritm with small changes can be adjusted to solve a completely different problem. The
choise of coding technique and calculation of fitness function can be very complicated and
difficult.

The main advantage of the genetic algoritms is that they can found a feasible
solution for a very short time.

POPULATION
Population is a combination of chromosomes. In our program to present the

population we use array of 1002 chromosomes. The thousand and first chromosome
stores the worst tour. The name of the array is population.

Population: array[0 1001] of TChromosome;
For each chromosome we calculate the length that is coded into it, actually this is the

fitness of the tour. It is stored in the next array:
popFitness: array[0 .. 1001] of Real;

Now we know that the tour with index I has a fitness popFitness[i].
The maximum number of towns is 32. The current number is stored in the variable

townCount. In the same, way the number of populations – popCount. In the process of
mutation, we use the coefficient MutInd.

GENETIC OPERATORS FOR RECOMBINATION
Two of the main problems that occur was choosing proper methods of crossover and

mutation. We have implemented two types of crossover – cycle crossover and a custom
one [8]. The user can choose which one to use in the calculation. Let us take a closer look
at the Cycle crossover.

First of all it fits perfectly to the way our tour is represented in the chromosome. For
example if our tour is

Tour = 1234
This means that we go from city 1 to city 2 to city 3 to city 4.Unlike other methods of

crossover here we do not pick a crossover point at all. We choose the first gene from one
of the parent chromosome.If our parents are

parent1 = 12345678
parent2 = 85213647

say we pick 1 from parent 1,

child = 1*******

We must pick every element from one of the parents and place it in the position it was
previously in. Since the first position is occupied by 1, the number 8 from parent2 cannot
go there. So we must now pick the 8 from parent1.

child = 1*******8

This forces us to put the 7 in position 7 and 4 in position 4, as in parent1.
child = 1**4**78

- IIIA.20-2 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

Since the same set of position is occupied by 1,4,7,8 in parent1 and parent2, we
finish bu filling in the blank positions with the elements of those positions in v2. Thus

child 1 = 15243678

and we get child2 from the complement of child1.

This type of crossover ensures that each new created chromosome is legal.A
chromosome is legal if it is constructed according to the requirements of the salesman
problem.In this crossover notice that it is possible for us to end up with the offspring being
the same as the parents. This is not a problem since it will usually occur if parents have
high fitness, in which case, it could still be a good chance.

If we want to solve this problem or other like not getting trapped in a local optimum
we could use mutation. Due to the randomness of the process we will occasionally have
chromosomes near a local optimum but none near the global optimum. Therefore the
chromosomes near the local optimum will be chosen to crossover because they will have
the better fitness and there will be very little chance of hiding the global optimum. So
mutation is a completely random way of getting to possible solutions that would otherwise
not be found.

Mutation is performed after crossover. The mutation index (MutInd) must decide
weather to perform mutation on this child chromosome or not. We then choose a point to
mutate and switch that point. For instance, in our example we had

child = 12345678

If we choose the mutation point to be gene three and 7, the child would become
child = 12745638

We simply switched the places of genes 3 and 7.Another mutation that takes place is

inverting a subtour in our child chromosome.Let us have the chromosome
child = 12345678

And choose the same mutation points 3 and 7.The subtour between these tow point

is switched in reverse order
child = 12765438

After the mutation process the program makes a strict verification of the

chromosome. If it is not legal then the chromosome is ignored.
The idea of the traveling salesman problem is to find a tour of a given number of

cities, visiting each city once and returning to the starting city where the length of this tour
is minimized.

The product finds a solution to the traveling salesman problem. For this purpose we
use cities, chromosomes and populations. Each city is represented by an object of class
TCity. The declaration is: TCity=class(TObject); Name:String; x,y: Integer; end;

Each city is situated on coordinates (x, y) on the map. In the working process a
defined number of cities are being created. Then the program solves the traveling
salesman problem for these cities. The combination of cities is stores into a object
collection citylist.It consists of objects of class TCity.

A tour or a chromosome represents a succession of indexes of cities. An index of
obect city in the collection citylist is the same as the index of the city. A tour contains
variable of type TChromosome. TChromosome=array[0 .. 32] of Integer;

This is an array of 32 elements, each one has an integer value. Let M is a variable of
type TChromosome: Var M:TChromosome;

- IIIA.20-3 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

Then the tour starts from city with index M[1], continues to city with index M[2]. The
maximum number of cities is 32, which is the length of the array.

FITNESS FUNCTION
The Purpose of the fitness function is to decide if a chromosome is good how good it

is [4]. In the traveling salesman problem the criteria for good chromosome is it’s length.
The longer the tour that is coded, the better the chromosome is. Calculation takes place
during the creation of the cromosomes. Each chromosome is created and then it’s fitness
function is calculated. The length of the chromosome is measured in pixels by the scheme
of the tour.

∑
=

=
towncount

i

itchromosomefitness
1

_ ’

where towncount is the number of cities in population, et ti is the distance between two
cities.

BASIC FUNCTIONS USED IN THIS PRODUCT
In this product were used sixteen basic functions and procedures in order to create a

completely working program.

2.1 DrawCity
2.2 ShowCities
2.3 DrawChromosome
2.4 GenerateTownSet
2.5 CreateTown
2.6 GetClick

2.7 Mutate
2.8 CleaUp
2.9 SaveToText
2.10 Sort
2.11 Image1Mouse

Move

2.12 seTownCountChange
2.13 TownKeyPress
2.14 CreatePopulation
2.15 TestCrossOver
2.16 CrossOver

INTERFACE

The interface [Fig.1] is Windows Forms oriented, showing the current result at the
moment they are calculated. In this order one of the stop criteria is that the user can
terminate the calculations if he finds a feasible solution.

Fig. 1

The options screen [Fig.2] allows us to change the parameters of the genetic
algorithm. We can change the mutation, inversion, and transposition coefficients.

- - - IIIA.20-4 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

Fig. 2
CONCLUSIONS AND FUTURE WORK

Genetic algorithms appear to find good solutions for the traveling salesman problem,
however it depends very much on the way the problem is encoded and which crossover
and mutation methods are used. It seems that the methods that use heuristic information
or encode the edges of the tour perform the best and give good indications for future work
in this area.

Overall, it seems that genetic algorithms have proved suitable for solving the traveling
salesman problem. As yet, genetic algorithms have not found a better solution to the
traveling salesman problem that is already known, but many of the already known best
solutions have been found by some genetic algorithm methods also.

It seems that the biggest problem with the genetic algorithm devised for the traveling
salesman problem is that it is difficult to maintain structure from the parent chromosomes
and still end up with a legal tour in the child chromosomes. Perhaph a better crossover or
mutation routine that retains structure from the parent chromosomes would give a better
solution that we have already found for some traveling salesman problems.

Random distance between towns

 Fig. 3 Fig. 4
The algorithm finds a good solution when there are 30 cities [Fig.1, Fig.2] when the
coefficients of inversion and transposition has lower values. When there are less cities
[Fig.3, Fig.4], coefficient’s influence is smaller. When the distance between cities is
constant, the dependences are the same [Fig.5, Fig.6].

- -

Coefficients of Mutation in Iteration Count

0

5000

10000

15000

20000

25000

30000

20/80 50/50 80/20 20/20 80/80

Inversion/Transposition

10 towns

20 towns

30 towns

Coefficients of Mutation in time

160

140

120

100 10 towns

20 towns80

60

40

20

0
20/20 80/80 20/80 50/50 80/20

Inversion/Transposition

30 towns

- IIIA.20-5 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

Constant distance between towns

 Fig. 5 Fig. 6

Coefficient of mutation

 Fig. 7 Fig. 8

REFERENCES
[1] Goldberg D. L., "Genetic Algorithms in Search, Optimization, and Machine

Learning", Addison-Wesley, 1989
[2] Goldberg D, "Web Courses", http://www.engr.uiuc.edu/OCEE, 2000.
[3] Mitchell M., "An Introduction to Genetic Algorithms", Massachusetts Institute of

Technology, 1996.
[4] Paechter B., Rankin R., Cumming A., "Timetabling the Classes of an Entire

University with an Evolutionary Algorithm", Napier University, Edinburgh, Scotland.
[5] Michalewicz Z., Janikow C., Handling constraints in genetic algorithms. In

Proceeding of the 4th International Conference in Gas. Morgan Kauffman, 1991.
[6] Michalewicz Z, Genetic Algorithms+ Data Structures = Evolution Programs,

Springer Verlag, 1992.
[7] Holland, John H., “Adaption in Natural and artificial systems”, the Mit Press, 1992
[8] Spears, W. M. and DeJong K., An analysis of multi-point crossover”, Foundations

of Genetic Algorithms, pages 301-315, Morgan Kaufmann, 1999.
[9] Syswerda, G., Uniform crossover in genetic algorithms, Procedings of the Third

International Conference on Genetic Algorithms, pages 2-9, 1995.

ABOUT THE AUTHORS
Assistant Prof., Milena N. Karova, Department of Computer Science, Studentska 1,

Technical University Varna, Phone: +35952383409, Email: mkarova@ieee.bg
Assos. Prof. Vassil J. Smarkov, Department of Computer Science, Studentska 1,

Technical University Varna Phone:+35952383640, Email: vsmarkov@ieee.bg

Coefficient of Mutation in Iterations Coefficients of Mutation in time

35000 200
30000
25000 150

30 towns 30 towns20000
20 towns 100 20 towns15000
10 towns 10 towns10000

50

0
5000

0
20/80 50/50 80/20 20/20 80/80 20/80 50/50 80/20 20/20 80/80

Inversion/Transposition Inversion/Transposition

- -

Student M. Degree Stoyan Penev , Department of Computer Science, Technical
University Varna Email penev@engineer.bg

Seconds

0

5

10

15

20

5 10 15 20 25 30 35
Coefficient of Mutation

Seconds

Iterations Count

0
500

1000
1500
2000
2500
3000
3500
4000

Iterations
Count

15 20 25 30 35 5 10
Coefficient of Mutation

- IIIA.20-6 -

