
International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

A location-based approach for distributed world-knowledge in mobile

ad-hoc networks

L.J.M.Rothkrantz, M. van Velden, D. Datcu

Abstract: In this paper we consider a building-like environment during crisis context where individuals
explore an unknown world. It is assumed that each individual is equipped with a PDA which is wireless
connected (MANET). Users can enter information about their position in the dynamically changing world. The
main focus is on automatically building a map of the world by using observations from individuals in such an
infrastructure-less network. We have designed and implemented this proof of concept, ManetLoc, in the form
of a simulation.

Key words: mobile ad-hoc network, agent, communication, topological map, infrastructure-less,
location, emergency, awareness, crisis.

INTRODUCTION
In every aspect of our lives we are becoming more and more dependent on the

availability of (information) systems. In times of crisis not all of these systems might always
be readily available. If a telecommunications infrastructure is not available at a certain
area, it should still be possible to set up an infrastructure-less network or mobile ad-hoc
network (MANET) under most conditions. Setting up such a network enables us to share
information concerning the state of the world and coordinate actions. These ad-hoc
networking technologies are making it possible to exchange information anywhere,
anytime without prior network infrastructure. Using handheld devices that operate in a
wireless environment, communication is still possible when major infrastructural
communication links have been damaged, destroyed or overloaded. So in case of a major
disaster within a city, emergency services can communicate without the need for preset-up
access points or other such infrastructural requirements.

At Delft University of Technology and DECIS lab, there is a research project focused
on crisis management. The current paper describes the results of a sub-project that aims
at designing and implementing a multi-agent-system that can operate in environments
without a pre-setup infrastructure (only a mobile ad-hoc network) and without any pre-
knowledge of the world. The system is able to process and fuse location information from
different users and sensors remote in space and time and to distribute this information
through the network.

RELATED WORK
In this section some related topics will be described. The first topic that is important

for our work is that of agent systems, and more specific, multi-agent systems (MAS) [1].
Many MAS systems are developed for wired networks, but only a few for wireless
environments.

Mobile Ad-hoc Networks (MANETs) are wireless networks consisting entirely of
mobile nodes that communicate on the move without base stations. Nodes in these
networks will both generate user and application traffic and carry out network control and
routing protocols. MANETs are very flexible because of the dynamic topology where nodes
are free to move arbitrarily and of the fact it allows Peer-To- Peer (P2P) communication in
an asynchronous manner.

Small devices are portable computing devices with networking capabilities, such as a
mobile phone or a PDA. Limited battery life and connectivity are the current most relevant
issues in our project. As we are not depending on infrastructure but on ad-hoc network
technologies the latter is this most constraining issue. Nowadays it is possible to execute
relatively complex software applications such as route planners on small devices and it is
to be expected that these devices will become more and more powerful in the near future.
The research reported here is part of the Interactive Collaborative Information Systems (ICIS) project, supported by the Dutch Ministry of Economic
Affairs, grant nr: BSIK03024.

- IIIA.2-1 -

Administrator
- -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

The device we take into account is the Sharp Zaurus SL-C760. This PDA has a Linux
based operating system, Qtopia, X, Java and Jade installed.

Location awareness plays a crucial role for context aware agents. From this point we
focus on the possibilities for the determination of the position of nodes in mobile ad-hoc
networks. If a system like GPS is available [8], each node can be easily aware of its own
location, but if GPS is not available (for some or all nodes) relative positions have to be
determined using other methods. There are systems and system concepts available,
which use network parameters such as time of arrival to calculate positions [7] [4] [9].

MODEL

We developed a simulation for MANET system. In the simulation system, maps of an

environment can be created and distributed. The main goal of our project involves storing
and distributing of location dependent context information based on user observations.
The processes involved are primarily based on the positions different virtual people visit
and any context information they might gather, such as where exits are and determining
the shortest route to one. In our program each node will never know its exact world
coordinates and initially does not have any knowledge of the world i.e. there is no
knowledge of absolute position and no initial map of the world. The goal for each agent-
node is to construct this internal map of the world by using its own observations and
sharing information with other nodes. In this way, the knowledge of one node is distributed
to the other, nearby nodes. In practice this means that nodes are within communication
range. In our case the data shared relate to information about halls and crossings and can
be extended to suit the full usage needs. The basic modules of the system are:

• Gathering data
Before anything else, methods for gathering data on location must be in place. The

collected data can then be transformed into knowledge and used for constructing and
maintaining a world model. In our system data about the world is gathered in 3 ways:
Sensory data: the most trivial is that the system keeps track of the distances the user
travels. For this it could count the number of steps the user makes and based on that (and
possibly other data) to make estimations on the covered distances.
User input: preferably by voice recognition users supply information to the system, but
other methods such as a point and click system could be used as an alternative or addition
to the projected use of voice recognition.
Other agents: information provided by other agents within communication range can be
merged with the agent’s own world model.

• Building topological maps from user and sensory input
The first goal for our agent-system is to be able to construct a local world model from

data the user and sensors provide about the world. The most trivial input a user can
provide for building a map of a building is to indicate that at a certain time he encounters
an intersection and possibly to indicate the number of paths and their directions. A graph
created on observations and actions from user reports can be displayed on the screen of
the user’s PDA. To be able to generate such a map it is important to be able to estimate
(relative) distances traveled. These distances can be calculated from the time between two
observations, combined with the type of movement (running, walking, etc) and can be
refined by using pedometer input. There are more possibilities but we prefer to use as little
specialized hardware as possible. In our system we will make the assumption the user
provides relatively accurate indications of distances traveled (+/- 10%). The used algorithm
will be described in the next section.

- IIIA.2-2 -

Administrator
- -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

• Sharing and merging location context information between agents

The agents are operating in a mobile ad-hoc networking environment in which it is
likely they encounter other agents every now and then. When an agent detects one or
more (compatible) agent(s) within its communication range, they share (figure 1) and
possibly merge (figure 2) the knowledge they have about the world [3] [5] [6]. Each agent
will attempt to merge information from other agents for themselves. Consequently it is
possible for two agents to come to different conclusions. This makes it possible for PDAs
to have different agent software (versions) running or to be in a different processing
modes. The only requirement is that the messages they send out must be compatible.

Similar to the internally stored world models, maps are shared in the form of graphs.
They are assumed to be consistent, but not exact and do not always have a common
reference frame. If two or more users have explored overlapping regions of an
environment their agents should have topological maps that have common sub graphs [11]
[2] with identical structure. Since having a common sub graph it is possible to find a
reference frame and merge the two maps into one.
In order to be able to merge two maps, we first need to match the maps together, building
hypothesis and choosing the correct one (i.e. the best match). A hypothesis is a possibly
rotated sub graph that the two maps have in common. There is a chance the process
described below does not supply a (large enough) hypothesis. If this is the case and not
enough vertices can be matched to make a good hypothesis yet, the map received is
stored internally. In that case we can try the matching process later on, when a more
complete world model is available. The used algorithm for matching two maps consists of
three phases, as described in the next section.

• Providing services based on location context information
When an agent running on a user’s PDA gathers knowledge about the world, the

knowledge can be used to provide services such as advice to the user. One of the
possibilities is guidance of the user. In the context of the crisis management project,
knowledge could be gathered about crisis indicators (fire, smoke, etc) and translated into
some sort of scenario (e.g. the building is on fire, south side is still clear to pass). It is not
unthinkable that having this type of knowledge available in an agent network could even
be used to coordinate the actions of individuals and groups.

ALGORITHMS

Closing the loop
If a user would travel long enough in a building he will eventually always return to a
location that was visited before from a different direction. The process described in the
example will then result in a loop in the graph, which should be detected and closed. A
correctly detected closed loop is very valuable information, as it is required to make a map
consistent. Consistent maps are required by our system to be able to match and merge

 Fig. 1 Agents in MANETs sharing maps Fig. 2 Map merging process

- IIIA.2-3 -

Administrator
- -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

one map with another. The question is how to detect such a closed loop [10]. As an
example of closing loops we take an even simpler square shaped world. Applied to this
square world the process described above might result in the following ‘map’, where the
two upper-left intersections, should be recognized as one and the same, but at the
moment we still have 5 vertices in the graph where there are only 4 intersections in the
world (figure 3).

Fig. 3 Open loop

Before being able to close a loop we should be able to detect and build hypotheses

concerning possible loops. For this we roughly follow a procedure that checks for the
existence of vertexes next to a given one that might close a certain loop. If we can find two
matching vertexes, then a loop hypothesis is started. To make the graph consistent when
two matching vertexes are found, small adjustments can be made to the endpoints of
edges. Whenever a loop hypothesis has been formed we can start testing it by comparing
edge lengths of the supposed loop with new measurements. These measurements will
result in accepting or rejecting the loop.

Matching maps
The used algorithm for matching two maps consists of three phases:
• Vertex matching
• Growing hypotheses
• Combining hypotheses

Vertex matching
The first step taken into account for map matching is building a list of all vertices that
match each other in the two maps. Two vertices only match if they have the same edge
directions. This is also the case if a vertex needs to be rotated to match, which is also
stored. We expect exactly known attribute vertices, such as the type of the vertices to
match perfectly. However, attributes that are subject to measurement error can be
compared with a similarity test. In the case of our simulation we don’t have any fuzzy
variables of a vertex, but in a real environment or an extension of our simulation such
variables might occur.

Growing hypotheses
As soon as the list of matching vertices is available, we analyze the matches by testing
corresponding pairs of edges and leaving the paired vertices. If the edges are compatible
and the vertices at the ends are also compatible, they are added to the hypothesis. If the
edges or vertices are incompatible, the entire hypothesis is rejected. The vertices are
tested with the same type of criteria and similarity tests used to form the initial pair. Edges
may also have both exactly and inexactly known attributes. In our system, they have their
path length compared with a similarity test. Our hypotheses are the unique matches

- IIIA.2-4 -

Administrator
- -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

surviving the growing process. Duplicate hypotheses are avoided by keeping a table of
vertex pais. When vertices are paired during the growth phase, the corresponding entry is
marked in the table. This entry corresponds to an initial pairing of vertices. A sub graph in
one map can be matched to multiple sub graphs in the other under separate hypotheses,
but a pair of matched vertices with a given edge correspondence can appear in only one
hypothesis. The matching and growing process is repeated until all valid vertex pairings
are examined. Please note that if we would be working with imperfect user input - which is
not the case in this concept – a procedure filtering noise should be added. When able to
match enough common vertices and edges, and if there is a minimal amount of conflicting
vertices and edges, the conflicts can be discarded and the hypothesis accepted.

Combining hypotheses
If successful, the hypothesis growing process described above results in a list of possibly
multiple hypotheses within the same rotation. From these hypotheses one has to be
selected. Before this takes place it is possible that if such a list contains more than one
hypothesis, some of these entries are consistent with each other. These hypotheses are
then combined with each other into one larger hypothesis cluster. After the system has
chosen a hypothesis cluster, the next step is to merge (or flatten) the two maps into one
single map. Estimates of path lengths can be updated by combining the measurements
from the two maps for corresponding edges. The edge orientations at the corresponding
vertices can be similarly merged. The parts of a given map that are missing should be
added. The merging process is globally performed in four steps:

• Rotate the received map so its orientation matches the local node’s map
• Shift the rotated map so its coordinates match the local agent’s map
• Add any new vertexes from the rotated and shifted map to the local node’s map
• Connect everything together (update edge lengths, check for inconsistency’s etc.)

System Tests

The simulation was initially performed on a 10 and 30 nodes map, first with just one

agent exploring the world automatically using nearest unexplored area navigation, and
later with more agents who were simultaneously started. The time it took an agent to find
the complete map was measured and also was always checked if the output was correct.

The results (figure 4, table 1) clearly show that the process of sharing and merging

maps has an effect, the larger the map the larger the effect and also the more agents the
more gained. Agents start-in in a map that was already explored by others logically have
the most gain; after they have explored a small part of the world they can simply merge the
large map parts with their own. Please note that the test result would probably be

- IIIA.2-5 -

Administrator
- -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

significantly lower if the Ad-Hoc Simulation (AHS) network code wouldn’t suffer from
deadlock issues. In another test the 30 intersections world was pre-explored completely by
5 agents and after that a fresh agent was added. The new agent received the complete
map from multiple agents and was able to find the complete correct map within 536
distance units traveled. Considering it takes 9701 units on average for an agent to explore
this world on its own this is a considerable gain (in this specific case 18 times faster).

CONCLUSIONS
Our experiments conducted for a simulated world show that it is very well possible to

distribute, and merge world knowledge in a mobile ad-hoc multi-agent environment. Even
in such an environment with limited communication possibilities our test results showed
there is a significant gain found when solving a mapping problem with multiple distributed
agents. As expected, the larger the map the better results on how useful distributing and
merging partial maps is. Although with the fact that simulation runs on a single machine
comes that there are limits because of processing power. This is an important issue still
encountered in our simulation system. Though when calculations would not be performed
on one machine anymore, but on one for each agent, it should not be a problem anymore.
So we anticipate scalability will not be a direct problem, should the simulation be translated
into a real life distributed system.

REFERENCES
[1] Agents. The American Association for Artificial Intelligence, 2000 – 2005.
[2] H. Bunke, A. Kandel, Mean and maximum common subgraph of two graphs,

University of Bern, University of South Florida, 2000.
[3] Z.Butler, A Rizzi, R. Hollis, Distributed coverage of rectilinear environments,

Carnegie Mellon University, 2001.
[4] S. Capkun, M. Hamdi, J. P. Hubaux, GPS-free positioning in mobile Ad-Hoc

networks, Ecole Polytechnique Federale de Lausanne, 2001.
[5] G. Dedeoglu,G. Sukhatme, Landmark-based matching algorithm for cooperative

mapping by autonomous robots, University of Southern California, 2000.
[6] K. Doty, S. Seed, Autonomous agent map construction in unknown enclosed

environments, University of Florida, 1994.
[7] T. Kitasuka, T. Nakanishi, A. Fukuda, Design of WiPS: WLAN-Based Indoor

Positioning System, Kyushu University, 2003.
[8] L. D. Murphy, T. Murphy, Global Positioning Systems, A Technical Assessment

Paper, 1997.
[9] D. Niculescu, B. Nath, Ad-hoc Positioning System (APS) Using AOA, Rutgers

University.
[10] F. Savelli, B. Kuipers, Loop-Closing and Planarity in Topological Map-Building,

Universit`a di Roma “La Sapienza”, University of Texas at Austin, 2004.
[11] G. Valiente, Subgraph Isomorphism and Related Problems, Technical University

of Catalonia, 2001.

ABOUT THE AUTHOR
Assoc. Prof. L. J. M. Rothkrantz, Department of Man-Machine Interaction, Delft University
of Technology, Phone: +31 15 2787504, Е-mail: L.J.M.Rothkrantz@ewi.tudelft.nl.

- IIIA.2-6 -

Administrator
- -

