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Experimental specifics of using HMM 
in isolated word speech recognition (*) 

 
Dimo Dimov and Ivan Azmanov 

 
Abstract: The paper presents the authors experience with HMMs (Hidden Markov Models) used for 

isolated word speech recognition for Bulgarian. Two met hods provoked by experiments are discussed, 
namely for the precise quantization of Gaussian probability distribution/density function (G-pdf) modeling the 
HMM states’ output, and a method for averaging a set of HMMs trained for different versions of a given word. 
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1. INTRODUCTION 

Speech Recognition is one of the most dynamic areas of today’s Informatics. Speech 
Recognition could be helpful in many different areas of everyday life – voice control of 
household appliances, dialing telephone numbers by digits pronunciation, voice navigation 
helping the driver and so on. 

Early achievements in the topic are done still in the 50’s by BELL Laboratories and 
MIT Lincoln Laboratories. A great success has been made in the end of 70’s in the area of 
isolated word recognition, namely by recognition of frequency or cepstral templates [2, 4], 
using Bayesian estimators, Winner filtering, linear prediction coding, etc., [9]. In the 80’s, 
these techniques were gradually supplanted by HMM based statistical methods [1, 5, 6, 8]. 

In brief, HMM-s are used for modeling of word(s) pronounced by one or more 
speakers, where modeling means obtaining a HMM to give a maximum resemblance 
probability only for the input word it was trained for. So, the recognition of isolated words 
makes a choice in a set of HMM-s for the HMM best molding given input word [1, 5, 6, 8]. 

In this paper, practical specifics in setting up of HMM for isolated word recognition are 
discussed. Two methods are proposed: (1) for adaptive quantization of probabilities 
molded by Gaussian distributions and (2) a method for averaging a set of HMM-s. 

 
2. FORMULATION 

The appropriate conventional symbolism [1, 2, 3, 5, 6, 8, 9] has been obeyed, as far 
as possible hereinafter. 
 
2.1. Cepstrum of input speech signal 

After preprocessing for a noise reduction the input speech signal is extracted by its 
(most) informative features, i.e. representing it by both enough of accuracy and statistical 
independency as much as possible. In Speech Recognition, this role plays usually the so-
called cepstrum that, in broad terms, carries out the information for energy change of the 
speech signal [2, 4].  

The input signal is split into frames of equal length. For each frame TtFt ÷=1, , a 
cepstral vector to  is calculated that is a Q-dimensional feature vector )1),(( Qiioo tt ÷== . 
Thus, the input speech signal is represented by its time sequence ),.....,( 21 Tooo=O  of 
cepstral vectors. In practice, Q is chosen in the range of 20÷40 [2, 8]. 

On Fig.1, a speech cepstrum is illustrated, where the darker areas correspond to 
words or syllables, i.e. to higher energy of the signal.  

We generally assume that the input speech is already split into isolated words, or 
respective syllables, or other phonetic-lexical units, e.g. the “allophones” from [7], which 
cepstral representation O  is to be given to a HMM for recognition. 
                                                 
(*) This work was supported by following grants of the Institute of Information Technologies at Bulg. Academy of Sciences 
(BAS): Grant #010056/2003 of BAS, Grant # I-1306/2003 of the National Science Fund at Bulg. Min. of Education & 
Science, and Grant # RC6/2004 of the CICT Development Agency at Bulg. Min. of Transport & Communication. 
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2.2. HMM – Hidden Markov Models 
Like many other recognition structures, HMM-s are also foreseen to work in two 

different regimes: (1) training and (2) recognition.  
When a sequence ),.....,( 21 Tooo=O , in our case consisting of cepstral vectors, feeds 

the HMM input, the conditional probability )|( MOP  is expected at the HMM output. Here 
M marks the training (setting up) degree of HMM respecting O . Given HMM is considered 
trained for the word O , if the output )|( MOP  reaches maximum at O . We assume that 
the elements Ttot ÷= 1, of O  are simultaneously passed to the HMM in each regime, 
training or recognition, i.e. the input space can be considered TQ dimensional one, see 
Fig.2. 

 
Given HMM could be defined by the five (S, A, s0, O, B ), where: 
• },...,,{ 21 NsssS =  is the set of the internal states; 
• ][ ijaA =  is the matrix of transitions aij (conditional probabilities for transition) from 

state si to state sj , Ni,jssPa ijij ≤≤= 1  , )|( . Obviously Nia
N

j ij ≤≤=∑ =
1  ,   1

1
. 

• s0 is the starting state; 
• },...,,{ 21 ToooO =  is the set of possible observations; 
• ][ ijbB =  is the matrix of conditional probabilities for given observation the HMM 

being in some internal state, i.e. NiTjsoPobb ijjiij ≤≤≤≤== 1  , 1  , )|()( . 
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Fig.2. For each input word O  the HMM generates a corresponding probability 
)|( MOP  that could be computed either by Baum-Welch or by Viterbi algorithms 

 

 
Fig.1. (a) An original signal of the word “internet”, and (b) its cepstrum 
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Thus, HMM is considered a probability finite automaton, whose internal states (in contrast 
to classical Markov models) cannot be directly measured (observed) but only indirectly.  

In speech recognition, the most spread HMM-s are the so called “left-right schemes” 
also known as “Bakis machines” [3, 6]. Here, instead of the complete transition graph, the 
matrix A reflects the streamness of modeled speech signal in the time, i.e. the spread 
direction is “not backward”, and the pre-history dependency is minimal (up to 1÷3 states 
back), [1, 6, 8], see Fig.3.  

 

 
The observation set O as numbered above strictly corresponds to the time sequence 

),...,,( 21 Tooo=O of cepstral vectors at the HMM input. The way M of HMM-training consists 
either of choosing N towards T, (i.e. N<T or N=T or N>T), or of calculating the transition 
matrix A as well as the matrix B of the output probabilities. It is mostly realized by an 
iterative optimization algorithm of Baum-Welch, while the real recognition – by the simpler 
and less exact approach of Viterbi.  

Thus, HMM calculates the output )|( MOP during the internal time Ttt ≤≤1, , as were 
reproducing the complete input O , state by state, see Fig.3. On the other hand, from 
external viewpoint, HMM operates as a black box, in time intervals of length T that can 
vary at different input words, see again Fig.2 and Fig.1. 

  
2.3. Calculation of the output probability )|( MOP  

In each moment Ttt ≤≤1, , HMM could be in an arbitrary state )1(1, −÷= Nisi , 
starting from s0 (in t=0) and finishing in sN (in t=T+1). In this sense, each vector Ttot ÷= 1,  
can correspond to (or be mould by) every internal state )1(1, −÷= Nisi , despite the fact 
that some state(s) would be the most probable one(s) for this ot. Because of the 
independence assumption for the state events, )|( MOP  can be calculated as the sum:  

∑=
}{

)|,()|(
X

XPP MM OO  ,             (1) 

over all possible ways )1,( TtxX t ÷== , along the states Sxt ∈  of HMM, from the starting 
s0 to the final sN. This interpretation is often illustrated with a network diagram, cf. Fig.4, and 
it is easy to check by it that: 

)1()(
1

)()1()0( )()|,( +
=

∏= txtx

T

t
ttxxx aobaXP MO  ,           (2) 

where 

Fig.3. A left-right HMM used in speech recognition 
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1)1()0( =xxa , )1()( +txtxa  and )()( ttx ob  are the corresponding transition and output probabilities 
for the given training M. 

In this network interpretation, HMM being in given state is , at the moment t, as if 
“generates” the corresponding input cepstral vector to , with a probability 

)|()()|()|)(( MM tobttsP itiii βα M=  ,           (3) 
where )|( Mtiα and )|( Mtiβ  are the corresponding complete probabilities, “forward to is ” 
and “backward till is ”, associated with any state )1(1, −÷= Nisi , at the moment Ttt ÷=1, : 
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This way the output probability )|( MOP  obtains the well known expression: 

TttobttsPP
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i
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i ÷=== ∑∑
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MMMM βαO  ,        (5) 

that is independent on the time t , cf. (1), and is often replaced by the simpler:  
0,)|0()|( 0 == tP MM βO  ,             (5a) 

or     1,)|1()|( +=+= TtTP N MM αO  .            (5b) 
Of course, (5a) and/or (5b) do not change the fact tha t the )|( MOP  calculation needs 

extra calculation of all, N(T+1) in number, probabilities of the type (4,4a). But, it is equation 
(5) that explicitly shows the difference between both basic methods for )|( MOP  calculus, 
Baum-Welch and Viterbi, as well as which of them to choose for the M training iterations. 

 
2.4. Training and recognition 

In a HMM based recognition system, a separate HMM is build (trained) for each word 
W∈OO, , W the set under recognition. The training of each HMM consists in setting up 

(adjusting calculus) of its matrices A and B, so that the probability )|( MOP  of “its own” 
word W∈O  to be maximal and as high as possible. Baum proposed a monotone 
converging algorithm for recursive adjustment of HMM to the optimal BWM  training, so that 

 
Fig.4. An illustration of HMM progress in the time, where the possible directions 
          are to the right (at time t =1÷T) and/or to the top (over the states si, i=1÷N) 



International Conference on Computer Systems and Technologies - CompSysTech’2005 
 

 

 
- IIIA.17-5 - 

 

 
 

)|( BWMOP , defined with (5), and first proposed by Welch [6], to reach the maximum in O , 
i.e.: { })|(max)|( BW MM

M
OOP PP ==BW  ,            (6) 

The Baum-Welch computation schema and many modifications as well [1, 3, 5, 6, 8], 
could be also used for almost optimal calculus of )|( BWMOP , namely by a formulae similar 
to (1) and inherited from Viterbi’s approach well-known in the graphs’ theory: 

)|()|,()|,(max)|(
}{}{

* MMMM OOOO PXPXPP
XX

=<= ∑  ,        (7) 

and consequently: 
 { } BWVi POOP <== )|(max)|( *

Vi MM PP
M

 .           (7a) 

Here, instead of summation over all possible paths, cf. (1), )|( ViMOP  is evaluated 
only over the maximal path (it is shown in black on Fig.4). Similar replacements should 
also be done defining respectively the new )|( Mtiα  and )|( Mtiβ , by analogy to (4,4a), 
what usually sharply improves the computational performance.  

Viterbi’s algorithm is well appropriate for the recognition regime, when HMM is trained 
enough. In the very beginning of the training and often during whole training, Baum-Welch 
algorithm is totally recommended, especially if it is important to ensure the monotony 
convergence conditions, i.e. without freezing in any false optimums. And the last could be 
usable, e.g. when appropriate correction in the number of HMM states is aimed, 
simultaneously with training, for reaching the optimal correspondence TN ⇔ .  

 
2.5. Transition matrix modeling 

Often for the )|( MOP  calculation [1, 6, 8], the output probabilities )( ti ob , i.e. the B 
matrix elements for given state is  of HMM, are modeled by a Q-dimensional Gaussian 
distribution of density ),( iiG Σµ , )1(1 −÷= Ni . The centre iµ  presents the mean of all 
cepstral vectors to  the HMM “generates” being in the state is . The covariance matrix iΣ  is 
most often assumed diagonal one, i.e. that all cepstral vector components O∈to , 

Qqqot ÷= 1,)( , are uncorrelated. Thus, each model ),( iiG Σµ  is independently examined 
along its coordinates Qqq ÷= 1),( , i.e. )( ti ob , and can be modeled by the multiplication:  
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where iσ  are the vectors of corresponding mean-square deviations. 
Obviously, )|( MOP  could overcome “very quickly” the lower limit of the computer 

numbers representation, e.g. ~1.E-308 for the C-type “double”. For instance, in 
accordance with (3), (4,4a), (5) and (8), we can evaluate roughly for the output )|( MOP : 

1
1

6
~)|( <














 ∆

TQNT

TN
P

σ
MO  .             (8a) 

As better a HMM is trained for given word, as “sharper” its Gaussians become that 
results in further more diminish of the modeled probabilities. For this reason a computation 
scaling for the intermediate probabilities )(tiα  and )(tiβ  is usually proposed, [6]. This way 
the whole computation range is pursued. But our experiments show that often no scaling 
can solve the problems either with underflow or with extra overflows appearing as well. A 
solution can be in using of log-probabilities, where it is appropriate, but the more serious 
approach lies in an adaptive and more precise calculation using the modeling Gaussians. 
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3. ADAPTIVE AND PRECISE QUANTIZATION OF THE MODELING GAUSSIANS 
Figuratively, each state of the HMM moulds the input sequence ),...,,( 21 Tooo=O  by a 

combination of N-1, in their number, Q-dimensional “Gaussians” each of them being just a 
multiplication of Q one dimensional (1D) Gaussians.  

By definition, the density ),;( σµoG , iqµµ = , iqσσ = , )1(1 −÷= Ni , Qq ÷= 1 , of each 

1D-Gaussian is a continuous function (pdf) over the input iqoo =  and the parameters µ and 
σ. This leads to a necessity of suitable quantization. Mainly, by reasons of uniformity, i.e. 
of isometrics for each input cepstrum element, we assume that the interval ∆ of 
quantization is equal along each coordinate of all the considered Gaussians. 

As known the G-pdf as density is a differential of the G-pdf as distribution, so the 
probability P(x), modeled by given 1D-Gaussian ),;()( σµxGxG =  could be calculated by 
the well known “trapezium-like” formulae: 

( ))2/()2/()()( 2
1

22 ∆++∆−∆=+<≤−= ∆∆ xGxGxxxPxP  .         (9) 
The probability P(x) could be approximated more precisely, but the problem of ∆ 

preliminary choice is more important in the case. Obviously, if ∆ decreases, the accuracy 
of P(x) calculation is increasing (see Fig.5), while the P(x) decreases itself that could lead 
to undesirable “underflow” in the computer calculations. 

On the other hand, by a chosen discrete ∆ the computation accuracy remains 
depending only on the value of σ, the mean-square deviation of the given 1D-Gaussian 
that can vary with each step of HMM training algorithm. Obviously, there exists a boundary 
value )(, 000 ∆= σσσ , depending on the choice of ∆ only, so that for each 0, σσσ < , the 
calculation of P(x), e.g. by (9), will lose an accuracy. An illustration of this is given on Fig.5. 

So, the formulae (9), we call it “large model”, is used for 1D-Gaussians of 0σσ ≥ . In 
the cases of 0σσ < , we introduce another calculation, called here “slim model”, where the 
classical integration formulae is used: 







 ∆−−

Φ−
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Φ== ∫
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∆− σ
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 .        (10) 

Here, )(XΦ  is defined like the well-known Laplace function: 

∫∫
∞−∞−

=−=Φ
XX

dxxGdxxX )1,0;()2/exp(
2
1

)( 2

π
           (10a) 

and could be tabulated only once at the beginning . 

 

 
Fig.5. Computational precision of probabilities depending on the 

          choice of σ and ∆: (a) by )(0 ∆≥ σσ ; (b) by )(0 ∆< σσ  
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The threshold 0σ  could be evaluated very precisely mainly considering the 
calculation error equality at the transition between both formulas. For the present 
experiments, we choose as best the values: ∆=1 and 10 =σ . 

 
4. AN AVERAGED HMM FOR GIVEN WORD VERSIONS 

So far we have considered the training of HMM for given word only. But we often 
have to deal with word versions caused by differences of the speaking speed, speaker’s 
timbre, dialect, etc. Then we need a generalization for the set of resulting HMMs to 
recognize as many versions as possible and with enough of confidence. We have 
examined two possible approaches:  

1. Instead of using a unique (Q-dimensional) 
Gaussian, each HMM state could be modeled by 
mixture of Gaussians (see Fig.6), each one 
reflecting the version specifics of the given word in 
the corresponding (to the HMM state) interval of 
pronunciation. The novel HMM has to be 
“uniformly” trained with all versions of the word at 
each training step. 

2. Similarly to the first approach, but the 
Gaussian mixture to be formed after training of all 
HMM-s for the given word versions. Besides, a new 

Gaussian can be also defined as an average of this (Q-dimensional) Gaussian mixture.  
The first approach seems more precise, but it requires much longer time for training, 

almost in a square degree longer because of each 1D-Gaussian of the mixture as well as 
each version of the word.  

We have preferred the second approach mostly considering its performance 
effectiveness. Thus, each extra version of the given word is molded more simply, by 
training of its own HMM only followed by a final actualization of the respective averaged 
Gaussians. This way we reach to the idea of an averaged HMM, where the necessary 
restriction for constant (a priori given) number N of the HMM internal states seems very 
acceptable. 

 
Fig.7. HMM averaging: (a) Q-dimensional Gaussians for the states of HMM(1), 

(b) corresponding 1D-Gaussians over the axis (q), q=1÷Q) for HMM(1) and HMM(2), 
(c) we average all 1D-Gaussians over the axis (q) for the state is  of all HMM(1÷K), 

(d) Mixture of Q-dimensional Gaussians for the states of the averaged HMM(*) 

 
Fig. 6. A Gaussian mixture 
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Let us have K versions less or more distinguishing the input template (word). Let us 
also assume possible statistical dependences among the versions’ cepstruma only by 
separate coordinates (q), q=1÷Q. Thus, we can average the corresponding HMM-s 
sequentially, state by state, coordinate by coordinate, i.e. for given coordinate (q), for the 
state si, i=1÷(N-1), we have K 1D-Gaussians to average, see Fig.7.  

The centre of the averaged Gaussian is evaluated as the mean vector:  
 KkK Q

kkkkK ÷==+++= 1,),...,(,/)...( )(
)(

)2(
)(

)1(
)()()()2()1( µµµµµµµµ

rrrrr
  .       (11) 

For the vector of mean-square deviations σ  (or dispersions 2σ ) we have: 
 ∑

≤<≤

++++=
Kji

jiK CK
1

),(
2

)(
2

)2(
2

)1(
22 2)...( σσσσ  ,          (12) 

where )1(1,,])(E[,])()(E[ ),(
22

)(),( −÷==−=−−= NjiCmomomoC iiiiijjiiji σ , E(.) is the mean 

operator, and ),( jiC  are the so called co-variation moments. Consequently: 
2

)()2()1(
222

)(
2

)2(
2

)1( )...()...( KK K σσσσσσσ +++≤≤+++  ,         (12a) 
where the left equality is reached for independent items (1D-Gaussians), while the right 
equality – for fully dependent ones. The inequalities (12a) give us the interval of possible 
experimental variation of mean-square deviations of the averaged Q-D-Gaussian. 

The averaged transition matrix is calculated item by item, by the incompatibility 
assumption for corresponding probabilities, i.e.: 

)1(1,,/)...( )()2()1( −÷=+++= NjiKaaaa K
ijijijij  .          (13) 

It is experimentally concluded that the transition matrix averaging is better to be 
performed mean-geometrically instead of mean-arithmetically if following (13), because of 
recognition improvements in this way. 

 
5. EXPERIMENTAL RESULTS AND ANALYSIS 

The experiments are done on an IBM PC compatible: Intel Pentium4 3GHz CPU, 
1MB L2-cache, 512MB RAM, 160GB HDD. The operational systems is Windows XP(SP2). 

The experimental program operates with standard WAV-files recorded on 22 kHz, 16 
bits per datum, mono signal. 

The experiment database consists of about 30 words, about 5 versions per word. For 
each version a separate HMM is trained. For the homonymous word versions an averaged 
HMM has been computed using the above proposed method. By no special measures of 
optimizing the computing environment, the average training time for the whole database is 
about 5 minutes, i.e. about 2 sec per word version.  

Some fixed parameters are: (a) the frame F length ∆t for windowing the cepstrum 
computing, ∆t=10ms, (b) the cepstral vectors’ length Q=40, (c) the HMM states’ number, 
N=7, (d) the maximal number of training iterations =15. Experimental timing for 5 words of 
the database is given in the following table: 

 
 

Input word 
spelling 

Frames’ count 
(10ms per frame) 

Preprocessing 
[sec] 

Baum-Welch training 
[sec] & [sec/frame] 

Baum-Welch 
recogn. [sec] 

Viterbi 
recogn. [sec] 

delete 185 0.016 1.187 / 0.079 0.500 0.422 
folder 115 0.013 0.828 / 0.055 0.375 0.351 

internet 153 0.014 0.719 / 0.048 0.484 0.465 
menu 107 0.012 0.688 / 0.046 0.469 0.443 
open 167 0.015 0.875 / 0.059 0.406 0.391 

 
Each word versions are preliminary processed, i.e. the sound noise is cleared as 

better as possible and each word is isolated. In such conditions the average recognition 
rate is about 98%. For the present the automatic end-point detection is not enough precise 
that drops down the recognition rate to about 75-80%. However this should be considered 
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optimistic. Experiments have been also made for words pronounced by different speakers, 
where the recognition rate decreases to  about 50-60%. We analyze that the recognition 
rate is to become better if train the averaged HMM by more versions per word, what, of 
course will increase the training duration. 

 

6. CONCLUSIONS AND FUTURE WORK 
Experimentally provoked, two methods have been proposed for improvements in the 

HMM based speech recognition, namely: 
1. A method for adaptive and precise computation of probabilities modeled by 

Gaussian pdf-s. The method aims an environment providing for monotone convergence of 
the HMM training by Baum-Welch and the consecutive recognition by Viterbi.  

2. A method for HMM averaging that combines separate HMM-s already trained for 
different versions of words under recognition. The method aims more effective 
implementation of the Gaussian mixture idea, i.e. for mixing/averaging finally instead of at 
the each iteration of HMM training as it is popular now. 

In near future we intend to develop an approach for optimal choice of the HMM 
internal states number generally depending on the input word lengths  and contents.  

Final aim of this research is to develop a HMM based method for speech recognition 
with automatic setting up to the specifics of Bulgarian language. A definite hope in this 
respect is voted to the experimental hypothesis of [7] for the almost fully representation 
completeness of a set of about 500÷1500 Bulgarian allophones.  
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