
International Conference on Computer Systems and Technologies - CompSysTech’ 2005 
 
 

 
-               - 

 

 
MEMORY SENSITIVE CACHING IN JAVA  

 
Iliyan Nenov, Panayot Dobrikov 

 
Abstract: This paper describes the architecture of memory sensitive Java cache, which benefits from 

both the “on demand” soft reference objects de-allocation provided by the JVM and the good hit-rate 
behaviour of the Last Recently Used (LRU) eviction policy. The experiments show that such cache 
implementation outperforms the fixed size LRU cache implementation and has the same stability under high 
load, heavy memory allocation and garbage collecting. The described technique can efficiently improve the 
performance of a fixed size memory cache implementation. 

Key Words: Memory Sensitive Caching, Java, LRU 
 

 INTRODUCTION 
Memory cache could be defined as part of the memory, used as continually updated 

buffer storage, which purpose is to optimize the data transfers between system elements 
with different characteristics. Caching data in memory is an efficient way to improve the 
performance of any software. One of the most trivial examples of memory cache 
implementation is an array in which each element represents data (cache entry) mapped 
to an index (key).  

Usually cache implementations have fixed size and the main design decisions 
standing upon such cache implementation are what eviction policy to be used. In contrast 
to fixed size caches, memory sensitive caches can be classified as ones with varying size. 
Designing a memory cache, able to operate on the Java platform could be more 
complicated because of the lack of efficient and reliable mechanisms for memory 
management. When designing memory sensitive cache in Java it is convenient to benefit 
from the advantages of the only mechanisms for memory management on this platform: 
the garbage collector and the behaviour of soft/weak references. On the one hand the 
garbage collector removes the complexity of the explicit memory management; on the 
other hand it limits the possibility for implementing dynamic resizing of the cache. 

By using soft/weak references and the garbage collector functionality one can design 
and implement memory sensitive cache in Java as combination of two parts: the first part 
acts as an ordinary fixed size cache (stable part) and the second one (memory sensitive or 
dynamic part) enrols the evicted data from the first part. The dynamic part of the cache is 
designed as canonicalizing mappings [8] (implementation example could be a hash table 
in which the value part of its entries is soft/weak reference holding the cached data) thus 
giving the memory cache the opportunity to change dynamically its size according to the 
current memory needs.  

The experiments show that such memory sensitive cache outperforms the fixed size 
cache and has good performance under various request distributions; it has as well the 
same stability under high load, heavy memory allocation and garbage collecting. 
Consequently memory sensitive technique can successfully be applied for improving the 
performance of a fixed sized caching strategy. 
 

RELATED WORK 
The general requirements for a caching utility have been circumstantially discussed, 

which resulted in a specification candidate published in Java Community Process (JCP), 
under JSR 107 - The Java Temporary Cache API (JCache) [5]. Most of the currently 
existing cache utilities are implementing the specification developed under JSR 107. Each 
of these use some of the most popular eviction policies: LRU (Least/Last Recently Used), 
MRU (Most Recently Used), MFU (Most Frequently Used), FIFO (First-In First-Out), TTL 
(Time-To-Live, after certain amount of time the object automatically leaves the cache) and 
other derivatives. Some implementations are able to work with plugged in custom 

- II.20-1 -



International Conference on Computer Systems and Technologies - CompSysTech’ 2005 
 
 

 
-               - 

 

implemented eviction policy too.  Despite the abundant variety of eviction policies, it is a 
common opinion that universal eviction policy, capable to perform well in any situation, 
does not exist.  

Common way to measure the performance of a cache implementation, in a particular 
use case situation, is to compute the hit ratio of the cache. The hit ratio µ of the cache is a 

value varying in the interval [0...1]. We define hit ratio as follows:
Σ

=
ςµ  where ς is the 

number of the successful requests to the cache (the number of the hits) and Σ is the total 
number of requests to the cache. It is easy to see that, when the value of µ inclines to 1 
then all requests to the cache are successful and hence we do not access the data from its 
source anymore. Respectively, when the value of µ inclines to 0 there is no benefit in using 
the cache. 

Based on its behaviour LRU is one of the most commonly used eviction policies for 
cache implementations. Under the competitive online algorithms model, it is proven that 
FIFO and LRU have one and the same competitiveness and in case of locality of 
references LRU incurs less times on faults [4], [6]; under particular relation among the 
accessed data it was also proven that LRU is better than FIFO [2]. Parallel with the 
advantages many publications exhibit overtly the weaknesses of different eviction policies 
[2], [10].  

Young [11] proposed an on-line caching strategy which does not strongly depends on 
the cache size and empirically showed that if there is particular request distribution then 
appropriate eviction policy could guarantee optimal performance.  

Our experiments show that memory sensitive technique applied to fixed size cache 
can partly compensate the disadvantages of any eviction policy. Such result is not 
obvious, as there is no technique in languages with automated memory management (like 
Java) that can be reliably used to implement common caching strategy in a way that the 
cache size is properly resized “on demand”. The experiments also show that a cache 
implementation based on memory sensitive technique can achieve good performance 
under heavy load, heavy memory allocation, garbage collecting and various request 
distributions. 

 
THE DESIGN 
The memory sensitive cache consists of two parts: a stable one and a dynamic one. 

Each of the parts of the memory sensitive cache can follow different eviction policies and 
the dynamic part changes its size by enrolling the data evicted from the stable part. The 
general rule for the dynamic part is: if there is enough free memory, the cache grows in 
size by enrolling the evicted objects from the stable part and in case of memory scare the 
dynamic part will shrink by evicting some of its objects. The dynamic changes in the size of 
the cache could be realized by relying on the recommendations (specified in the JVM 
specification) to the garbage collector specification and the management of soft/weak 
references [8]. As a result, the data which is not often accessed has greater probability to 
be evicted from the cache. 

In general the fixed size cache conforms to the following rule; if a cached object is not 
frequently used (according to the applied eviction policy) it has to be evicted from the 
cache to make space for other objects. In contrast, if there is enough free memory, the 
memory sensitive cache increases its size and enrols the new objects without evicting any 
potential cache leavers; each saved object could be turned later into successful hit in the 
cache. Due to this policy, a memory sensitive cache is able to outperform the fixed size 
cache in hit ratio.  

To implement the dynamic part of the cache one has to use data structures that are 
able to change their size dynamically. Hash tables are preferred because of the O(1) 

- II.20-2 -



International Conference on Computer Systems and Technologies - CompSysTech’ 2005 
 
 

 
-               - 

 

amortized complexity of lookup and modification operations although the resizing of the 
structure in most common implementations can be costly in practice under load. Other 
dynamic data structures such as trees do not need resizing but the access time to the 
elements depends (logarithmically) on the number of the elements they hold. Still, the 
usage of hash table gives the most satisfying practical results. 

The proposed design guarantees the following characteristics of the memory 
sensitive cache: (1) the performance of the cache will be at least the same as the 
performance of its stable part, since the memory sensitive cache contains the functionality 
of the fixed size cache. (2) The cache will be able dynamically to change its size therefore 
it will not constantly occupy a lot of memory. (3) The design could be implemented reliably 
in a language with automated memory management (like Java) with no techniques to 
implement common caching strategy in a way that the cache is properly resized “on 
demand”. 

The drawback of this design lies in the access time of the data stored in the dynamic 
part which in general will be longer than the access time to the stable part; however it will 
be acceptable compared to the access time of the data stored in the original source. 

 
IMPLEMENTATION GUIDELINES 
By using canonicalized mapping the cache elements will be evicted from the cache if 

and only if they are garbage collected. Evicting elements from the dynamic part of the 
cache leads to shrinking of the dynamic part of the memory sensitive cache.  

It is required for the JVM implementations to clear soft references before an 
exception for not enough memory is thrown, otherwise it is not specified when or whether 
to clear them. JVM implementations are encouraged to clear soft references when the 
program demand for memory exceeds the supply, it is also recommended to clear older 
soft references before newer ones as well as to clear recently used soft references after 
those who haven’t been used recently [8]. If there is enough memory, soft references will 
be ‘strong’ enough to keep the softly referenced data in the heap. If memory becomes 
insufficient it is up to the garbage collector to clear the softly referenced data, and to 
decide which elements to collect (evict from the cache). 

For the realization of the weak part of the memory sensitive cache it is convenient to 
use the so called ‘canonicalizing mappings’ [8], in which we have mapping between a ‘key’ 
object and soft reference - ‘value’ object (holding a cache element which is a potential 
cache leaver).  

One of the most trivial and commonly used implementations of canonicalizing 
mappings pattern is a hash table having soft/weak reference as a value object in each of 
its entries. The problem with this realization is when an object is garbage collected its soft 
reference object will continue to exist pointing to a null cache entry, which is not valid. 
Consequently this problem will lead to unnecessary resizing of the data-structure. To 
control the resizing of the dynamic part we need to implement a mechanism for clearing, in 
real time, the invalid soft references from the canonicalizing mapping data-structure (i.e. 
when the object is garbage collected its soft reference object must be immediately 
removed from the data-structure too). For implementing such mechanism we can 
successfully rely on the functionality offered by the java.lang.ref.ReferenceQueue class.  

The out-performance of the memory sensitive cache compared to fixed size cache 
comes from its dynamic part which saves the evicted data from the stable part and keeps it 
in the memory. When data is requested and it is not located in the stable part it will be 
found in the dynamic part unless it is not garbage collected (evicted from the cache). 
Memory sensitive cache is expected to show better performance, if objects found in the 
dynamic part are moved back to the fixed size part. Without formal analysis, such 
approach is intuitively close to the LRU strategy. In case of memory scare it is up to the 
garbage collector to decide how to shrink the dynamic part of the memory sensitive cache, 

- II.20-3 -



International Conference on Computer Systems and Technologies - CompSysTech’ 2005 
 
 

 
-               - 

 

therefore with memory sensitive technique one could implement a cache which objects 
has different probability to be evicted.  
 

THE EXPERIMENTS 
It was proven experimentally that the memory sensitive technique can be used 

successfully to improve the performance of a fixed size cache. 
In order to model the requests to the cache we used an access graph [1]. The 

vertices of the graph are objects, the edge from p to q represents that q can be requested 
immediately after p. We associate each vertex of the access graph with a real number in 
the interval [0...1] corresponding to the probability of the object q to be requested after the 
object p. By justifying the values associated with the edges we can simulate different kind 
of request distributions. The access graph can be successfully used to model locality of 
references and uniform distribution of requests too.  

For the experiments we use a Java implementation following the above described 
implementation guidelines. Several series of tests with different types of distribution have 
been done and the results have been compared. 

The first experiment aim to verify that there is no overhead associated with the 
introduction of dynamic part i.e. that memory sensitive cache performs as well as fixed 
size cache when the former is not able to benefit from its weak part. For this experiment 
was used an application which took all the free memory, not giving any opportunity for the 
memory sensitive cache to use its dynamic part.  

 
Figure 1: Hit ratio of memory sensitive LRU cache and fixed size LRU cache 

 (requests with defined distribution, heap is almost full) 
 

The results of the fixed size cache and memory sensitive cache are different in less 
than 0.4%.  

The second experiment aim to verify that memory sensitive cache outperforms the 
fixed size cache, given particular request distribution. 

The experiment is divided in two sets of tests: the first set is executed with defined 
distributions and the second is executed with uniform distribution of requests. In both 
series of tests the dynamic part of the memory sensitive cache is allowed to change 
dynamically its size. 

The first series of tests is executed with various distributions of requests which did not 
allow the memory sensitive cache to use its full potential. Despite that it performs better 
than a fixed size cache. 

- II.20-4 -



International Conference on Computer Systems and Technologies - CompSysTech’ 2005 
 
 

 
-               - 

 

  
Figure 2:  Hit ratio of memory sensitive LRU cache and fixed size LRU cache  

(requests with defined distribution, enough free memory) 
 

The first set of tests shows that some strict distribution of requests can influence the 
performance of the memory sensitive cache. Despite the strict order of the requests the 
memory sensitive cache outperforms the fixed size cache in all the tests, managing to 
save some of the objects in its dynamic part in contrast to the fixed size cache which has 
evicted those objects. 

The second series of tests aim to verify that the memory sensitive cache outperforms 
the fixed size cache in case of uniform distribution of requests. The dynamic part of the 
memory sensitive cache is able to change dynamically its size. 

  
Figure 3: Hit ratio of memory sensitive LRU cache and fixed size LRU cache 

(requests are with uniform distribution, enough free memory) 
 

The results confirmed that with uniform distribution of requests, the fixed size cache 
evicts many more valuable objects; most of these objects memory sensitive cache 
manages to save and retrieve later on. In contrast, the fixed size cache has to retrieve 
those objects from its original source therefore its response time results are much better.  

 
CONCLUSIONS AND FUTURE WORK  
Memory sensitive technique can be used for improving the performance of fixed size 

caches regardless of the distribution of requests. Such a result is not obvious, as there is 
no technique in languages, with automated memory management (like Java), that can be 
used to implement common caching strategy in a way that the cache size is properly and 
reliably resized “on demand”. In this paper we describe the design and implementation of 
such memory sensitive cache. The experiments show that in cases when the memory 

- II.20-5 -



International Conference on Computer Systems and Technologies - CompSysTech’ 2005 
 
 

 
-               - 

 

sensitive cache could not benefit from its dynamic part the performance is the same as the 
performance of the fixed size part of the cache. This is to be expected since memory 
sensitive cache contains all the functionality the fixed size cache has. The experiments 
also show that the memory sensitive technique could be used to increase the performance 
of a fixed size cache implementation without influencing the work of the other applications 
competing for the same memory the cache is using (i.e. the cache can change its size 
dynamically according to the memory needs).  

As part of a future work, one can evaluate an approach of memory sensitive cache, 
organized on more than two layers (parts) with different policies for the objects to pass 
from one layer to another. 

There is also potential for improvements in the Java Platform: native canonicalized 
mappings, in which the whole entry is removed from the data-structure in case the object 
is garbage collected, could have strong and positive impact on the memory sensitive 
cache performance.  
 

REFERENCES 
[1] Borodin A., S. Irani, P. Raghavan, B. Schieber. Competitive paging with locality of 

reference. Journal of Computer and System Sciences, 50(2):244-258, April 1995. 
[2] Chrobak M., J. Noga. LRU better than FIFO. Proceedings of the ninth annual 

ACM-SIAM symposium on Discrete algorithms, 78 – 81, 1999. 
[3] Cognitive Science Laboratory at Princeton University - WordNet lexical database 

http://wordnet.princeton.edu/cgi-bin/webwn 
[4] Irani S., A. Karlin, S. Phillips. Strongly competitive algorithms for paging with 

locality of reference. Proceedings of the third annual ACM-SIAM symposium on Discrete 
algorithms, 228 – 236, 1992. 

[5] Java Temporary Cache API (JSR107 – www.jcp.org) 
[6] Shedler G., C. Tung. Locality in page reference strings. SIAM Journal on 

Computing, 1:218-241, 1972.  
[7] Sleator D., R. E. Tarjan. Amortized efficiency of list update and paging rules. 

Comm. ACM, 28(2):202-208, February 1985. 
[8] Venners B. Inside Java 2 Virtual Machine. Blacklick, OH: McGraw-Hill, 1999. 
[9] Young N. On-line file caching. Proceedings of the ninth annual ACM-SIAM 

symposium on Discrete algorithms, 82-86, 1999. 
[10] Young N. The k-server dual and loose competi-tiveness for paging. Algorithmica, 

11(6):525-541, June 1994. 
[11] Young N. On-line caching as cache size varies. Proceedings of the second 

annual ACM-SIAM symposium on discrete algorithms, 241 – 250, 1991. 
 

ABOUT THE AUTHORS 
Iliyan N. Nenov, candidate for MSc degree in Computer Science, Sofia University “Sv. 
Kliment Ohridski”, Sofia, Bulgaria; Software engineer at SAP Labs Bulgaria, Sofia, 
Bulgaria (http://www.sap.com/company/saplabs/bulgaria) working in the Java Server 
Technology Group. E-mail: ilian.nenov@sap.com Office Phone: (+359) 2 9157-451 

 
Panayot M. Dobrikov, MSc Computer Science at Sofia University “Sv. Kliment Ohridski”, 
Sofia, Bulgaria; Software architect at SAP AG. Walldorf, Germany (www.sap.com) working 
in the Java Server Technology Group.  
E-mail: panayot.dobrikov@sap.com Office Phone: (+49) 6227 7-64631 

- II.20-6 -


