
International Conference on Computer Systems and Technologies - CompSysTech’ 2005 
 
 

 
-               - 

 

 
Computing Data Cubes and Aggregate Query Processing  

 
Anna Rozeva 

 
Abstract: The paper is dealing with data cubes, multidimensional data structures built from data 

warehouse for OLAP purposes. Performing aggregations over cube dimensions and the way they are stored 
is considered to be a problem worth optimization. A two-tier multilevel list structure for storing cubes has 
been proposed. Algorithms for tiers’ setup and maintenance when records are loaded into the data 
warehouse have been designed. An overview of analytical queries has been presented. Algorithm for 
processing analytical query over data cubes stored in the proposed structure has been outlined.  
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INTRODUCTION 
Data warehouse is a data store serving the purposes of decision support [2]. It is 

system architecture for information processing with application in decision making. As a 
result basic design issues for the data warehouse are query throughput and response 
time. The data model providing for such a purpose is the multidimensional one. The basis 
of the model consists in viewing a numeric value, i.e. measure as being dependent on a 
set of attributes, dimensions. In a data warehouse of a retail business appropriate 
measure is sales and dimensions product sold, customer and time of sale. The most 
typical database schema for the multidimensional model is the star schema. Dimensions 
are represented by dimension tables and measure is contained in the fact table. The 
relation of each dimension table to the fact is achieved by means of a foreign key. The fact 
table can be perceived as a cube. Cube being a logical entity giving away values of a 
certain fact arising at an intersection of a combination of dimensions – fig.1.  

 

 
 

Fig.1. Fact table represented by 3-dimensional cube 
 

The cube, corresponding to the sales fact provides for viewing the sales measure by 
product, by client, by date. Cubes have been designed as logical models serving on-line 
analytical processing (OLAP) applications. OLAP provides powerful and fast tools for 
reporting on data. The basic notion of OLAP consists in computing multiple related group-
bys and aggregate measure values over dimensions. For improving response time data 
cubes are designed to hold measure values together with summarized information 
(aggregates). The purpose of the cube is to output measure of a fact at a particular 
aggregation level. The set up of a cube consists in computing aggregated measures 
grouped by all subsets of the dimensions. Precomputing aggregates and storing them in 
the cube provides for speeding analytical queries. There are two basic approaches for 
physical implementation of cube computation – ROLAP and MOLAP. The difference 
between the two OLAP physical models is in the kind of structure data is stored in – 
relational tables or numeric arrays. In ROLAP a cell of the cube is represented as a record, 
part of the attributes identifies the location of the record in the multidimensional space of 
the cube and another attribute holds the data value contained in the cell. In MOLAP the 

sale Product Client Date Amt
p1 c1 1 12
p2 c1 1 11
p1 c3 1 50
p2 c2 1 8
p1 c1 2 44
p1 c2 2 4

day 2 c1 c2 c3
p1 44 4
p2 c1 c2 c3

p1 12 50
p2 11 8

day 1
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elements of the array hold numeric values only and the position in the array represents the 
connection of numeric values to the dimensions, i.e. the dimensions are implemented by 
the dimensions of the array. Further on in the paper MOLAP cube computation issues are 
presented, the problem of sparseness being examined and a multilevel list structure for 
handling it has been outlined. Application issues connected with structure’s maintenance 
and performance of analytical queries are pointed out.     
 

CUBE COMPUTATION 
• Aggregations over Data Cube 

Most of the OLAP queries over the cubes require aggregation of measures at some 
level. The following aggregations can be computed for the cube from fig.1: sales grouped 
by product, customer and date; sales by product and customer; sales by product and date; 
sales by customer and date; sales by product; sales by customer; sales by date and total 
sales. By 3 dimensions there are 23=8 granularities at which aggregated sales can be 
computed. For consistent representation of the aggregated values they are denoted as “*”. 
The aggregates produced from the cube in fig.1. are shown in fig.2. 

 

 
 

Fig.2. Granularities of aggregated values for data cube  
 

A granularity for aggregated values in the cube is referred to as a subcube. This is a 
region of the cube with smaller dimension. A d-dimensional cube has 2d subcubes. Each 
subcube can be computed from the base data. Some subcubes can be directly computed 
from other subcubes. A cube therefore can be represented as a set of subcubes – fig.3. 

 

 
 

Fig.3. Data cube – subcube lattice 
 

An edge between two subcubes shows that one subcube can be computed from the 
other. Edges are from finer to coarser granularity. The coarser granularity is specified by 
one attribute less than the finer one. The SQL notation for computing aggregations over 
cube dimensions implies several Group-Bys and can be expressed by CUBE operator [4]: 

SELECT Product, Customer, Date, Sum(Sales) 
FROM Sales_Table 
CUBE BY Product, Customer, Date 

c1 c2 c3
p1 56 4 50
p2 11 8

c1 c2 c3
sum 67 12 50

sum
p1 110
p2 19

129 sale(c1,*,*)

sale(*,*,*) sale(c2,p2,*) 
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The main issue of data cube computation concerns aggregations along dimensions 

and combinations of dimensions and their storage for further effective access by OLAP 
queries.  

• Overview of Storage Techniques for Data Cubes 
MOLAP implementation of data cubes deals with arrays and position based access to 

the values therein. A problem arising with the array representation of a cube is 
sparseness. Sparseness with respect to some attributes means small relation cardinality 
compared to the cross product of attribute domains. Sparseness is due to large domain 
sizes of some Cube By attributes and/or large number of Cube By attributes in the query. 
Algorithms for implementing a cube as an array aiming to overcome sparseness are 
presented in [1], [3], [6] and [10]. The one from [6] computes the various subcubes using 
generated pipelined paths. The idea is in sharing computation across paths. Path 
generation implies the underlying relation to be sorted in a particular attribute ordering. 
The algorithm from [1] builds subcube with a single attribute first and then subcube with 
two attributes, etc. At the cost of duplicating work computation of records which don’t meet 
minimum support is reduced. The algorithm from [10] implements the technique of 
chunking for dealing with sparse data. It concerns overlapping group-bys in different 
computations to reduce memory requirements. In case of insufficient memory to hold the 
cubes several passes over the input data will be needed. A tree-like structure for storing 
the cube has been designed in [3].    

• Proposal of Two-Tier Structure for Storing Data Cube 
We’ve designed a structure for storing the cube which is based on implementing the 

subcube lattice shown in fig.3. The cube storage architecture is proposed to be a two-tier 
one. The lowest level of the lattice denoted (customer, product, date) represents the 
subcube without any aggregation, i.e. facts from the fact table. This subcube is stored as a 
first tier. The rest of the subcubes containing aggregation on one or more dimensions form 
the second tier of the storage structure. These are records with at least one “*” element as 
shown in fig.2. We’ll examine a cube with small number of dimensions and moderate 
attribute cardinalities. All aggregates for existing facts will be computed. The elements of 
the second tier are computed from the first one. The first tier provides for answering 
queries concerning detail data. We’ll consider now a storage structure for the tiers.  

The facts of the first tier are organized in a multilevel list structure. The number of 
levels corresponds to the number of dimensions. The number of elements in a level 
corresponds to the dimension’s cardinality. Dimensions are ordered by cardinalities and in 
this order they are set as levels of the structure. The first level contains the elements of the 
least cardinality dimension. In the root of the storage structure pointers are set up to the 
elements of the first level. The structure is implemented by scanning the fact table. For 
each record the dimensions’ members are checked in the order by which levels have been 
decided to be set up. For the corresponding member of the first level pointer is created for 
the next lower level and further on to the next level, etc. The fact value is stored in the 
record at the last level. In the process of scanning the fact table the lists are checked and if 
the elements of the levels have already been created the fact value is aggregated (usually 
summed) with the value in the record at the last level. Otherwise new elements of the 
corresponding levels are created as well as fact value records at the last level. For the 
table from fig.1 the initial setup of the first tier multilevel storage structure is performed in 
the following way: 

1. Choose a dimension to represent the first index level - D1. Level elements are d11, 
d12, …, dc1,  ci is the cardinality of Di in a fact table FT. Order the other dimensions as D2 
and D3;  

2. Initialize c1 pointers pi from the root to the first level elements; 
3. For each record in FT check D1, go to the corresponding element in the first level; 
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4. Check for pointer pi to next level dimension D2 element; if it exists – check for 
dimension D3 element; if it exists sum the fact table value with the one (V) in the record 
from the last level; 

5. If dimension D2 element doesn’t exist in the second level of the storage structure - 
initialize pointer pi to the D2 element and further on to D3 element, create record for storing 
the fact value (V) of the current FT record.  

Repeat steps 3, 4 and 5 for all fact table records.  
The measures (aggregated facts AV) in the second tier are computed from the first 

tier by traversing pointers from the root to the last level. The root of the second tier 
represents the most aggregated subcube – (*, *, *). The next level subcubes are the ones 
with aggregates on two dimensions – (D1, *, *), (*, D2, *), (*, *, D3). Each of them contains 
as many samples as the cardinality of the dimension is. AV denotes the aggregated 
measure computed from the facts of the first tier. The next lower level contains AVs for the 
less aggregated subcubes - (D1, D2, *), (D1, *, D3), (*, D2, D3) - fig.4.    

 

 
 

Fig.4. Multilevel list structure for the subcube lattice 
  

• Storage Structure Maintenance 
After the initial setup of the two tiers of the multilevel storage structure it has to be 

maintained and updated when new records are appended to the warehouse fact table. 
Maintenance issues concern: 

1. Update of the facts V in the first tier and the corresponding AVs in the subcubes of 
the second tier. 

2. Update the levels with new dimension members.  
Update of Vs is to be performed when new fact is appended to the table for a 

combination of dimension members that have already been placed into the levels of the 
first tier. In this case the corresponding pointers to the V values are traversed and the new 
value is summed with the one in the last level record. Further on update of AVs in the 
second tier is performed. This is done on the subcubes of all granularities by following the 
pointers. When a record is appended with a dimension member that hasn’t been created in 
the tiers’ levels update has to be performed on the tier structure itself. This implies 
initializing pointers and creating new records to hold the corresponding fact value in the 
first tier. This is done by performing the setup procedure from the previous subsection. The 
second tier update implies the setup of pointers for the new samples of the subcubes as 
well as update of the AVs of the corresponding higher granularity subcubes.   
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OLAP QUERIES OVER DATA CUBE 
A data cube is set up to enhance the performance of OLAP queries. Researches 

concerning this topic have developed in three main directions, i.e. data storage structures 
[7], view materialization [5] and indexing. Our previous work on indexing data warehouse 
tables is presented in [8] and [9]. Our current work implements storage structures 
techniques. Further on we’ll explain the way a cube stored in the structure shown in the 
previous section processes OLAP queries. OLAP query selects data from subcubes of the 
data cube. Major operations are slicing, dicing, rolling-up, drilling-down and pivoting. 
These operations are implemented in the CUBE operator shown in the introduction by 
means of aggregation, subtotalling, cross tabulation and grouping. An example of OLAP 
query for the cube shown in fig.1. is: ”Output the sum of p1 product sales to customers c1 
and c2 between d1 and d5”. The query criteria may be: 

- Single value from the domain of a dimension (p1);  
- Partial set, i.e. subset of domain values for the other dimension (c1, c2); 
- Contiguous range in the domains of another dimension (d1…d5).  
The number of dimensions specified in the query represents its degree. Formally a 

query can be represented [3] by a record with a degree determined by the number of 
specified dimensions and elements - the dimensions with a notation showing the type for 
each of it – value, partial set or range. Following the notation for the storage structure 
presented in fig.4. the sample query that was stated will have the following formal 
expression:  

(a) Q = (d1, d2, d3) = (D11, D21, [D31, D32]).  
Aggregate values denoted in fig.2. by “*” can represent query values too. The formal 

expression of such a query will be: 
(b) Q = (d1, d2, d3) = (D11, *, [D31, D32]).  
The queries stated so far are full, meaning that they specify criteria for all cube 

dimensions. Further on the way of processing a full query over the cube structure shown in 
fig.4 will be explained. The query marked with (a) doesn’t include “*” elements in its 
criteria. The values that’ll result from it can be found by processing the first tier of the cube 
by following the pointers corresponding to the stated values. The (b) query includes “*” so 
it’ll be processed over the second tier. Pointers to the corresponding subcubes will be 
followed and the AV values will be output. Pseudo code of the algorithm for processing an 
OLAP query over the cube’s two-tier storage structure is shown in fig.5. 

 

 
 

Fig.5. Algorithm for query processing over the two-tier storage structure 
 

 The query criteria are checked and the tier serving for its answering is determined. 
The first query is processed over the second tier. Following the pointer of D11 to subcube’s 
(D1, *, D3) sample the aggregated measures AV for D31 and D32 are output. The second 
query is processed over the first tier and the result values V are located by following the 
pointer of D11 from the first level to D21 from the second to D31 and D32 at the last one.        
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CONCLUSIONS AND FUTURE WORK 
The storage structure for a data cube that has been designed consists of two tiers – 

one for the finest granularity cube data and the other for the aggregated values. Pointer-
based multilevel list structure implements both tiers. The multilevel list follows the 
representation of a cube as subcube lattice. The separation of data by granularity provides 
for faster location of aggregates by accessing the aggregate tier only. Algorithms for list 
setup and maintenance after data load have been designed. This storage structure 
overcomes the problem with sparseness in the array-based methods by storing existing 
data values only. Classification of analytical queries and a formal description of OLAP 
query have been presented. Algorithm for designing query execution plan as well as for 
tier processing has been outlined.  

Future work is intended in implementation of hierarchies for cube dimensions and 
tuning the storage structure for supporting hierarchical dimensions. A matter of interest 
represents processing analytical queries implying selection of aggregates satisfying certain 
condition and optimized multilevel list search. 
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