
International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

FPGA Based Micro controller for Voice Message Synthesis

Ivan Kanev

Abstract: The paper discuses the basic results from design and analysis of Field Programmable Gate

Array (FPGA) based microcontroller for Voice Message (VM) system. The conditions that the system must
answer, its architecture and instruction set are defined. The whole project, called VMCore, is implemented in
VHDL and is tested on Altera ACEX 1K FPGA device.

Key words: FPGA, VHDL, VM, Microcontroller.

INTRODUCTION
Computer voice communications is a modern, dynamically developing field with

versatile applications. There is a special interest in independent systems for Voice
Messages (VM) that can be used for different applications. In this paper are shown the
basic results of the design and investigation of a Field Programmable Gate Array (FPGA)
based microcontroller for VM synthesis.

CONCEPTUAL MODEL
Three fundamental problems have to be solved in designing Voice Message systems:

• Choosing a method for synthesizing;
• Choosing a compression method for voice primitives;
• Choosing a hardware platform for the system implementation;

The system should consume a part of the hardware resources. In that way, the

unused resources could be used for system upgrade such as:

• Other applications (intelligent testers or measurement devices, Security,

Information or Interactive Voice Response (IVR) systems);
• Other interfaces (RS 485, I²C Bus, SPI, USB, TCP/IP etc.);
• The system should allow reconfiguring with a new or optimized configuration in

the field.

Figure 1 shows the conceptual model of a microcontroller for synthesis of voice

messages, called Voice Message Core (VMCore).
A hardware platform based on FPGA has been picked for the implementation of

VMCore project. This approach allows for satisfying scalability and reconfigurability
requirements.

A method based on words, phrases and sentences has been chosen for voice
message synthesis. In comparison with other known methods for voice message synthesis
(phoneme, diphthongs, etc.) [2], this one is limiting the dictionary of the system and is
consuming a considerable part of system resources for storage of the sample voice
primitives, but nevertheless it is the only method that guarantees high quality of the sent
message. Management of the system, as it is in its basic version is carried out by an ASCII
coded text file, through a Serial Port.

All cardinal numbers in their verbal variety [6] are synthesized by VMCore's system
software.

Modified Adaptive Delta Modulation (MADM) algorithms have been chosen for
compressing the voice primitives used for VM synthesis [5]. Compressed voice primitives
are stored in System Flash Rom SFR). MADM algorithms and their modifications are
considered to have significant errors in decompressing. The error correction is based on

- I.3-1 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

algorithms [4] that use statistically defined coefficients. The initialization of the FPGA is
performed by a special configuration CPLD, which after reset extracts the configuration file
from the SFR and loads it into the configuration port of the FPGA. The configuration file
and the decompression error-correction coefficients are stored in the SFR. The conversion
of the digital voice signals into analog ones is done by an integrated double-buffered serial
DAC [7]. For testing of interactive applications, a bidirectional, 8-bit parallel PORT A is also
included in the base version of VMCore.

Fig 1.VMCore. Conceptual Model

ARCHITECTURAL OVERVIEW
The Architectural model of VMCore (Fig.2) is defined after analysis of resources

needed for the synthesis of VM. It is based on Harvard RISC Like architecture of
accumulator type [3], [8], [10], [11].

File Register (FR). All of the system, I/O and general purpose registers are
combined in a single File Register (fig. 3). The system and I/O registers are synthesized
from logic elements and occupy the first 16 bytes of the address space of FR. The general
purpose registers are RAM-based and occupy 240 bytes of a single [1] Embedded Array
Block (EAB). The remaining 256 bytes of the EAB are occupied by the System RAM. In
the VMCore project, System RAM is used for:

• Storing the strings used for management of the VM synthesis.
• Synthesizing a sequence of phonetic primitives (primitive begin address, length)

that will form the current message.
• Organizing stacks for storage of system registers during interrupt proceeding.

The outputs of FR registers are multiplexed by Dout_mux and they form Data OUTput

(DOUT) bus.
ALU. Arithmetic Logic Unit is synthesized as a parallel combinatory logic circuit. Two

registers, A and B store the input operands during one Machine Cycle (MC). The output of
ALU forms Data INput bus (DIN). In the VMCore project, The ALU performs the following
operations on the operands A and B:

DIN = B (pass); DIN = 0; DIN = A + B; DIN = A + B + Carry; DIN = A - B; DIN = A - B - Carry; DIN = A +
1; DIN = A – 1; DIN = A and B; DIN = A or B; DIN = A xor B; DIN = not B; DIN = rol B; DIN = ror B; DIN =
A[bit I] set B[bit i]; DIN = A[bit I] clear B[bit i].

- - - I.3-2 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

A special Skip Flag (SF): SF = 1 if B[bit i = 1] else SF = 0, has been synthesized for
the implementation of the Skip operation in testing bit operands in ALU.

Fig 2. VMCore Block Diagram

Address Register. Two address registers: AR0 (28 bit) and AR1 (16bit) are used for

addressing of SFR. AR0 is synthesized as a counter with parallel initialization and it is
used for indirect access to data stored in SFR as well as for SFR’s programming. AR1 is
synthesized as a right shift register with parallel initialization. In the VMCore project AR1 is
used [4] for addressing the SFR area, which holds the decompression error-correction
coefficient. The outputs of AR0 and AR1 are multiplexed by Addr_Mux and they form
(External) Address Bus.

Program Counter (PC), PC STack (PCST) and Program Memory (PM). The basic
version of VMCore uses a 9 bit PC to extract the instructions from the PM. All instructions
are extracted in advance. PC uses a separate stack (PCST) to store its current value when
executing instructions for subprogram call (Call) or interrupt. In the base version, PCST is
synthesized by means of four registers organized as a FIFO structure. This allows the
implementation of up to two nested interrupts and two nested calls to subprograms.
Program memory is synthesized from EAB blocks in 16 bit data ROM configuration. The
size of PC can be incremented up to 14 bits to support PM extension.

Instruction Register (IR). IR contains the operation code (OPC) and operands of
currently executing instruction. It is 16 bits register formed by two 8 bit registers: IRH и IRL.
IRH (fig. 5) contains one of the following: OPC or OPC and operands of instructions from
“Bit” and “Control” groups (Call or Goto). IRL holds the address of a register (FR_Addr) or
Immediate Data. When a data transfer from FR to address registers occur, IRL goes to into

- - - I.3-3 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

counting mode to address several consecutive FR’s registers, which content will be
assumed to corresponding AR.

Control unit (CU). In the VMCore project, the CU has several functions: instruction

decoding; forming the logical conditions for controlling the multiplexers (A_mux, B_mux,
etc.); generating the signals for control and synchronization of the processes in the
microcontroller. When addressing the SFR, in the CU are built the access control signals
(Control Bus).

I/O Controller. There are three synthesized peripheral controllers in VMCore project:
• UART. A controller used for Host system communication. Among its tasks are

managing voice synthesis, programming SFR and testing of the system.
• Port A. One of the basic applications of microcontroller for VM synthesis is for

Interactive Voice Response systems. Because of that, an 8 bit parallel PORT A is also
included in the VMCore project for testing of IVR applications.

• MADM Decoder. A controller used for decompression and error correction of
voice primitives, which are subject of transmission. It also incorporates a serial DAC
controller.

INSTRUCTION SET SUMMARY
The project’s instruction set (Table 1) consists of 54 instructions arranged in six

groups: Data transfer, Arithmetic, Logic, Bit, Control and Address Register Data Transfer.
All instructions have a fixed length of 16 Bit and are coded (fig. 5) in four different formats.
The execution of 49 of the instructions takes one system clock.

Three instructions (DSZ Rn, TBSC Rn,bi, TBSS Rn,bi) are executed for different count of
system clocks (one or two depending on SKIP operation). The execution of initialization

- - - I.3-4 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

address register instructions take respectively four system clocks for MOVE AR0,Rn and two
system clocks for MOVE AR1,Rn.

TABLE 1. VMCore Instruction Set
Mnemonic Function Mnemonic Function
Data Transfer Logic
MOV A,Rn (A) ← (Rn) AND A,Rn (A) ← (A) AND (Rn)
MOV Rn,A (Rn) ← (A) AND A,#Data (A) ← (A) AND #Data
MOV A,#Data (A) ← #Data OR A,Rn (A) ← (A) OR (Rn)
MOV R0,#Data (R0) ← #Data OR A,#Data (A) ← (A) OR #Data
MOV Rn,(R0) (Rn) ← ((R0)); FR Scope XOR A,Rn (A) ← (A) XOR (Rn)
MOV Rn,(R0),RAM (Rn) ← ((R0)); RAM Scope XOR A,#Data (A) ← (A) XOR #Data
MOV (R0),Rn ((R0)) ← (Rn) ; FR Scope NOT Rn (Rn) ← not (Rn)
MOV (R0),Rn,RAM ((R0)) ← (Rn); RAM Scope ROL Rn Rotate Left through Cary
MOV Rn,(R1+A) (Rn) ← ((R1) + (A)); FR Scope ROR Rn Rotate Right through Cary
MOV Rn,(R2) (Rn) ← ((R2)); RAM Scope Bit
MOV (R2),Rn ((R2)) ← (Rn) ; RAM Scope SETB Rn,bi (Rn[bi]) ← 1
CLR Rn (Rn) ← 00 CLRB Rn,bi (Rn[bi]) ← 0
Arithmetic TBSS Rn,bi Skip if (Rn[bi]) = 1
ADD A,Rn (A) ← (A) + (Rn) TBSC Rn,bi Skip if (Rn[bi]) = 0
ADD A,Rn,C (A) ← (A) + (Rn) + C LDBF Rn,bi (BF) ← (Rn[bi])
ADD A,#Data (A) ← (A) + #Data Control
ADD Rn,A (Rn) ← (A) + (Rn) RET (PC) ← (PCST)
ADD Rn,A,C (Rn) ← (A) + (Rn) + C RETI (PC) ← (PCST) ; (IEN) ← 1
SUB A,Rn, (A) ← (A) - (Rn) CWDT (WDT) ← 0
SUB A,Rn,C (A) ← (A) - (Rn) - C NOP (PC) ← (PC) + 1
SUB A,#Data (A) ← (A) - #Data CALL Abs (PCST) ← (PC); (PC) ← Abs
SUB Rn,A (Rn) ← (A) - (Rn) GOTO Abs (PC) ← Abs
SUB Rn,A,C (Rn) ← (A) - (Rn) - C Address Register Data Transfer (ARDT)
CMP A,Rn (SR[C,Z]) ← (A) – (Rn) MOV Rn,(AR0) (Rn) ← ((AR0))
CMP A,#Data (SR[C,Z]) ← (A) – #Data MOV Rn,(AR0 + 1) (Rn) ← ((AR0 + 1))
INC Rn (Rn) ← (Rn) + 1 MOV Rn,(AR1<<BF) (Rn) ← ((AR1 << BF))
DEC Rn (Rn) ← (Rn) - 1 MOV AR0,Rn (AR0i) ← (Rn+i); i = 0..3
DSZ Rn (Rn) ← (Rn) – 1; skip if(Rn)=0 MOV AR1,Rn (AR1i) ← (Rn+i); i = 0..1
 MOV (AR0),Rn ((AR0)) ← (Rn)
 MOV (AR0+1),Rn ((AR0+1)) ← (Rn)

Some of the instructions are unique for the VMCore project. These are all the

instructions from “Address Register Data Transfer” group. They are used for indirect
access to SFR’s data. Some of the instructions in “Data Transfer” group are used for
processing arrays stored in File register (MOV Rn,(R1+A)) or File register and System
RAM (MOV Rn,(R0); MOV Rn,(R0),Ram; MOV (R0),Rn; MOV (R0),Rn,Ram). Two instructions (MOV
Rn,(R2) and MOV (R2), Rn) address System RAM only. They are used to store system
registers in case of interrupt proceeding, because they do not change Status Register’s
flags.

RESULTS
The VMCore project is designed using VHDL and compiled in Altera’s QUARTUS II

design & synthesis software environment. The separate components are simulated on
Mentor Graphic’s MODELSIM simulation software. The project is built for three FPGA
chips from the Altera ACEX 1k series [1]. The allocation of the occupied resources in
percentages is shown on figure 6.

The microcontroller is tested at 20 Mhz system clock and execution time of 250ns for
one machine cycle. The actual tests are made on Altera EP1K50 - 3 Speed Grade module
and are observed with Fluke’s ScopeMeter 99B current clamping oscilloscope.

The whole project uses 1249 Logic Elements and 3 Embedded Array Blocks from the
EP1K50 device. Figure 7 shows the allocation of separate components in percentages.

- I.3-5 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

The quality of the synthesized messages is expertly measured by the Mean Opinion
Scores (MOS) [9] method. Four experiments are carried out with phonetic primitives based
on:

Fig.6. Used FPGA resourses

0% 20% 40% 60% 80%

1K30

1K50

1K100 Used LE Used EAB

• A. Sentences
• B. Words and phrases
• C. Synthesized isolated

numbers
• D. Words, phrases and

synthesized numbers

The test messages are

sampled at frequency of 11025 Hz
and are converted in analog speech
signals using serial DAC LTC 1451
in 9 bit mode [7].

Fig. 7. VMCore - Component Allocation

File Reg
25%

ALU
10%

AR 0,1
8%

IR
2%

PC
9%

UART
8%

MADM
Decoder

23%

RAM/
ROM
1% Contrrol

Unit
14%

The expert evaluation of the
quality of the synthesized messages
is shown in fig. 8 and is classified as
“good quality, only very slight
impairments” [9].

As a result of the carried
investigations, the following
conclusions can be made:

• The designed microcontroller

can be implemented on low cost
FPGA platforms and considerable
amount of resources (57% LE and
70% EAB for EP1K50 device)
remain free for developing
additional applications and
interfaces (fig.6). Through the
embedded JTAG port the system
offer the possibility to be partially or
fully reconfigurable, which enables
its elaboration after it is put into
operation.

Fig. 8. Quality of the voice message
synthesis

3,80 3,90 4,00 4,10 4,20 4,30 4,40

A

B

C

D

MOS Scale: 3 - Fair; 4 - Good; 5 - Excellent

• The chosen method for

synthesis ensures high quality of the
sent voice messages. Regardless of
the limited dictionary that is typical
for systems of such class, they have
wide practical application in the
cases when the quality has to
dominate.

REFERENCES
[1] Altera, ACEX 1K Programmable Logic Device Family , Data Sheet, 2002.

- - - I.3-6 -

International Conference on Computer Systems and Technologies - CompSysTech’ 2005

- -

[2] Dutoit T., An Introduction to Text - to - Speech Synthesis, Academic Publisher,
1996.

[3] Hennessy J, Patterson D., Computer Architecture a Quantitative Approach,
Morgan Kaufman Publisher, 2000.

[4] Kanev I., Error Correction at Decompressing with MADM Algorithms, J.T.U.,
Fundamental Sciences and Application, Vol. 11, 2004.

[5] Kanev I., Implementation of MADM Algorithms on FPGA Based Platform, Proc. of
CompSysTech’04, Int. Conf. on Computer Systems and Technologies, I.7.1-9, 2004.

[6] Kanev I., Voice Synthesis of Cardinal Numbers, Proc. of the National Scientific
Conf. “10 Years Department of Computer Systems at the Technical University – Plovdiv “,
Plovdiv, Bulgaria, 2003.

[7] Linear Technology, LTC 1451 - 12 Bit Rail - to - Rail Micropower DAC, Data
Sheet, 2003.

[8] Manoilov P., Kuzmanov G., Stefanov T., Momchilova V., Popov A., Two
Approaches in One for Quick and Efficient Design of Low Area Custom Microprocessor
Cores. Developments if the Ims8NI Core via VHDL and Logic Synthesis, Proc. of the
Seventh International Conference Electronics ’98, September 23 –25, 1998, Sozopol,
Bulgaria, book 2, pp. 57-64.

[9] Rabiner L., Applications of Voice Processing to Telecommunications, Proc. of the
IEEE vol. 82 No. 2, February 1994.

[10] Tabak D., RISC Systems, Research Studies Press Ltd.: Taunton, Somerset,
England TA1 1HD, 1990.

[11] www.opencores.org/projects/riscmcu, Yap Zi He, Building A RISC Microcontroller
in an FPGA.

ABOUT THE AUTOR
Ivan Kanev, Department of Computer Systems, Technical University Sofia – Branch

Plovdiv, Phone +359 32 659 704, E-mail: ikanev@it-academy.bg.

- I.3-7 -

