
International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.5-1 -

Multidimensional models - Constructing DATA CUBE

Antoaneta Ivanova, Boris Rachev

Abstract: The goal of this article is to depict algorithms and new approach of creating data cube

efficiently and to set tasks for future work. In short, the paper has described it as a data abstraction that
allows one to view aggregated data from a number of perspectives: 1) Conceptually, the cube consists of a
base cuboid, surrounded by a collection of sub-cubes that represent the aggregation of the base cuboid
along one or more dimensions; 2) The basic methods for computing a group-by: sort-based and hash-based.
3) Dynamic Data Cube, which provide efficient performance and allows for the data cube expansion in any
direction. 4) OO Conceptual Model Data Cube – class definition of data cube.

Key words: data warehouse, data cube, OLAP, MOLAP, multidimensional data model

INTRODUCTION
Aggregation is predominant operation in decision support database systems. On-Line

Analytical Processing (OLAP) databases often need to summarize data at various levels of
detail and on various combinations of attributes.

The data cube, also known in the OLAP community as the multi-dimensional
database.

A data cube [2],[6],[7] is constructed from a subset of attributes in the database.
Certain attributes are chosen to be measure attributes, i.e., the attributes whose values
are of interest. Other attributes are selected as dimensions or functional attributes. The
measure attributes are aggregated according to the dimensions.

The Figure 1 below depicts a small, practical data cube example, consider a
hypothetical database of sales information maintained by a company. This particular data
cube has three feature attributes - store, product, and time - and a single measure attribute
– product sales for a large chain of stores (sales is computed with the sum function).

By selecting cells, planes, or subcubes from the base cuboid, we can analyze sales
figures at varying granularities. Such queries form the basis of OLAP functions like roll-up
and drill-down.

In total, a d-dimensional base cube is associated with 2d cuboids. Each cuboid
represents a unique view of the data at a given level of granularity. Not all these cuboids
need actually be present, however, since any cuboid can be computed by aggregating
across one or more dimensions in the base cuboid. Nevertheless, for anything but the
smallest data warehouses, some or all of these cuboids may be computed so that users
may have rapid query responses at run time.

Figure 1. A multidimensional model data cube: (a) The cube itself is composed of cells
that define fact attributes, while (b) the classification hierarchies display the dimensions that

define the cube – product, store and time

International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.5-2 -

DATA CUBE ALGORITHMS
CUBE operator
One final note is in order at this point: described the data cube as a conceptual

model. This is certainly true. However, in the case of a MOLAP server, it is also the
physical model, as MOLAP stores the cube structure directly as a multi-dimensional array.
Conversely, ROLAP servers must map this representation to a relational design.
OLAP is multi-dimensional data. That being said, one might legitimately ask "How does
one prepare data for multi-dimensional analysis, particularly if some or all of the 2d cuboids
are required?" Strictly speaking, no special operators or SQL extensions are required to
take a raw data set, composed of detailed transaction-level records, and turn it into a data
structure, or group of structures, capable of supporting subject-oriented analysis. Rather,
the SQL group-by and union operators can be used in conjunction with d sorts of the raw
data set to produce all cuboids. However, such an approach would be both tedious to
program and immensely inefficient, given the obvious inter-relationships between the
various views. Consequently Jim Gray [4] et al. proposed the data cube operator as a
means of simplifying the process of data cube construction. This paper defines that
operator, called the data cube. The cube operator generalizes the histogram, cross-
tabulation, roll-up, drill-down, and sub-total constructs found in most report writers. The
writers explain the cube and roll-up operators, show how they fit in SQL, explain how users
can define new aggregate functions for cubes, and discuss efficient techniques to compute
the cube.

Subsequent to the publication of the seminal data cube paper, a number of
independent research projects began to focus on designing efficient algorithms for the
computation of the complete cube. Most were based upon the exploitation of the data cube
lattice, a directed graph that depicts the relationships between all 2d cuboids in a given d-
dimensional space. Starting with the base cuboid – containing the full complement of
dimensions - the lattice branches out by connecting every parent node with the set of child
nodes/views that can be derived from its dimension list. In general, a parent containing d
dimensions can be connected to d views at the next level in the lattice.

 It should be clear from the lattice
depiction that many views share
common dimension values and that
any efficient computational mechanism
for producing group-bys, whether it be
sort-based or hash-based, must exploit
these relationships. For example, a
three-dimensional cuboid can be
viewed as the parent of three two-
dimensional cuboids, each of which
contains a distinct combination of two
dimensions of the parent. Clearly, it
should not be necessary to
independently compute all four views
since the parent and one or more of
the children may be able to share
some portion of the aggregation
workload.

Though a number of algorithms have been proposed, the techniques of primary
importance can be roughly divided into three categories.

Top Down. The top down methods [1] work directly from the lattice to compute
smaller group-bys from larger parents. For example, the parent view ABCD might be used
to generate ABC, AB and A. What sets the top down methods apart is the means by which
they share the computation costs across views. Perhaps the best-known methods in this

Figure 2. The Lattice structure for the CUBE operator

International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.5-3 -

class are the PipeSort and PipeHash. The basic premise of both algorithms is that a
minimum spanning tree should be generated from the original lattice such that the cost of
traversing edges - and thereby building cuboids - will be minimized.

There are five optimizations for combining multiple group-bys to efficiently compute:
- Smallest-parent - this optimization, first proposed in aims at computing a group- by

from the smallest previously computed group-by. In general, each group-by can be
computed from a number of other group-bys. Figure 2 shows a four attribute cube (ABCD)
and the options for computing a group-by from a group-by having one more attribute called
its parent. For instance, AB can be computed from ABC, ABD or ABCD. ABC or ABD are
clearly better choices for computing AB. In addition, even between ABC and ABD, there
can often be big difference in size making it critical to consider size in selecting a parent
for computing AB;

- Cache-results - This optimization aims at caching (in memory) the results of a
group-by from which other group-bys are computed to reduce disk I/O. For instance, for
the cube in Figure 2, having computed ABC, we compute AB from it while ABC is still in
memory;

- Amortize-scans - This optimization aims at amortizing disk reads by computing as
many group-bys as possible, together in memory. For instance, if the group-by ABCD is
stored on disk, we could reduce disk read costs if all of ABC, ACD, ABD and BCD were
computed in one scan of ABCD;

- Share-sorts - This optimization is specific to the sort-based algorithms and aims at
sharing sorting cost across multiple group-bys;

- Share-partitions - This optimization is specific to the hash-based algorithms. When
the hash-table is too large to fit in memory, data is partitioned and aggregation is done for
each partition that fits in memory. We can save on partitioning cost by sharing this cost
across multiple group-bys.

For OLAP databases, the size of the data to be aggregated is usually much larger
than the available main memory. Under such constraints, the above optimizations are
often contradictory. For computing B, for instance, the first optimization will favour BC over
AB if BC is smaller but the second optimization will favour AB if AB is in memory and BC is
on disk.

Bottom Up. As the dimensions increase, the high-dimension cuboids become
increasingly sparse. Because child views are now almost as big as their parents, the top-
down methods may become less efficient. As a result, a number of bottom up methods
were proposed. Bottom up methods work by first aggregating (usually with a sort) on a
single dimension, then recursively partitioning the current attribute in order to aggregate at
successively finer degrees of granularity. Since the recursive sorting is performed on
smaller and smaller partitions, most of the external memory sorting is avoided, restricted
mainly to the first or second dimensions.

Array-based The algorithms [14], [5] presented above all correspond to the ROLAP
model in that they operate on multi-dimensional tables. Given that many vendors (and
customers) are attracted to the perceived performance benefits of the MOLAP model, it is
also important to explore array-based approaches that directly support multi-dimensional
data structures. In short, such methods structure the raw data set in a d-dimensional array
that is typically stored on disk as a sequence of chunks. (A chunk is a means by which a
large d-dimensional array can be partitioned into smaller d-dimensional sub-arrays). On
dense data sets, there is little questions that array-based algorithms are very efficient. In
sparse, high-dimensional environments, however, various performance-draining
compromises must be employed in order to access the array.

Dynamic Data Cube
Range sum queries are useful analysis tools when applied to data cubes. A range

sum query applies an aggregate operation (e.g., SUM, AVERAGE) to the measure

International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.5-4 -

attribute within the range of the query. Efficient range-sum querying is becoming more
important with the growing interest in database analysis.

Geffiner, Agrawal and A.El Abbadi [3] have presented the model of the range sum
problem and discuss several previous approach. They present a performance analysis of
the Basic Dynamic Data Cube, concluding that the method still has considerable update
complexity as the dimensionality of the data cube increases. They present the Dynamic
Data Cube (DDC), analyze the performance characteristics of the method, and
demonstrate that the DDC is suited to dynamic growth of the cube, and that it handles
clustered data more efficiently. This is important advantage of this method.

For many potential applications, however, it is more convenient to grow the size of
the data cube dynamically to suit the data. For example, astronomers who are analyzing
stars might form a data cube for their star database. They expect to discover more stars in
the future. Clearly it would not be efficient to create a data cube that initially contains cells
for all possible locations of star systems in the Universe, particularly since the vast majority
of the resulting cells would always be empty. Rather, it is more practical to create the data
cube initially only for locations of existing star systems; as additional systems are
discovered, new cells can be added to the data cube. New star systems, however, can be
found in any direction relative to existing systems, therefore the data cube must be able to
grow in any direction relative to its existing cells. The direction of data cube growth should
be determined by the data, and not a priori. The capability to grow the data cube
dynamically in any direction is very important in many application environments.

This example also illustrates another problem. In many application domains data is
essentially clustered, and there are large unpopulated regions in the data space. This
additional information is not static. Range sum queries over a data cube formed from such
data would be very useful, providing scientists with aggregate measurements for any
arbitrary region of the cube.

Data Cube as a level in Object Oriented Data Warehousing design
Trujillo, Palomar and Gomez [10] have presented the approach uses a UML class

diagram to specify the structure of a multidimensional model.
Figure 1 shows both a data cube and classification hierarchies. In Figure 1a shows a

data cube typically used for multidimensional modeling. In this particular case, is defined a
cube for analyzing measures along the product, store, and time dimensions, as shown in
Figure 1b’s classification hierarchies. In this example, product sales is related to only one
product that is sold in one store to one customer at one time.

A measure is additive along a dimension if they can use the SUM operator to
aggregate attribute values along all hierarchies defined on that dimension. The
aggregation of some fact attributes—called roll-up in OLAP terminology— might not,
however, be semantically meaningful for all measures along all dimensions.

In this example, number of clients—estimated by counting the number of purchase
receipts for a given product, customer, day, and store—is not additive along the product
dimension. Because the same ticket can include other products, adding up the number of
clients for two or more products would lead to inconsistent results. However, other
aggregation operators (SUM, AVG, MIN) —could be applied to other dimensions (time).

Defining the classification hierarchies of certain dimension attributes is crucial
because these classification hierarchies provide the basis for the subsequent data
analysis. Because a dimension attribute can also be aggregated to more than one other
attribute, multiple classification hierarchies and alternative path hierarchies are also
relevant. For this reason, directed acyclic graphs provide a common way of representing
and analyzing dimensions with their classification hierarchies.
Figure 1b shows the different classification hierarchies defined for the product, store, and
time dimensions. On the product dimension, they have defined a multiple classification
hierarchy so that they can aggregate data values along two different hierarchy paths:

International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.5-5 -

• product–type–family–group; • product–brand.
Other attributes, not used for aggregating purposes, can provide features for other
dimension attributes, such as product name. For the store dimension, they have defined
an alternative path classification hierarchy with two different paths that converge into the
same hierarchy level:

• store–city–province–state; • store–sales_area–state.
Finally, they have also defined another alternative path classification hierarchy with the
following paths for the time dimension:

• time–month–semester–year; • time–season.
In most cases, however, classification hierarchies are not so simple. The concepts of

strictness and completeness are important for both conceptual purposes and for further
multidimensional modeling design steps.

Once developers define the multidimensional model structure, users can define a set
of initial requirements as a starting point for the subsequent data-analysis phase. From
these initial requirements, users can apply a set of OLAP operations to the
multidimensional view of data for further data analysis. These OLAP operations usually
include the following:

• roll-up, which increases the level of aggregation along one or more classification
hierarchies;

• drill-down, which decreases the level of aggregation along one or more
classification hierarchies;

• slice-dice, which selects and projects the data;
• pivoting, which reorients the multidimensional data view to allow exchanging

dimensions for facts symmetrically.
OO approach can elegantly represent multidimensional properties at both levels:
Structural level
This OO approach is not restricted to using flat UML class diagrams to model large,

complex data warehouse systems. UML’s package grouping mechanism groups classes
into higher-level units, creating different levels of abstraction and simplifying the final
model. In this way, a UML class diagram improves and simplifies the system specifications
created with classic semantic data models such as the Entity-Relationship model. Their
approach clearly separates the structure of a multidimensional model specified with a UML
class diagram into facts and dimensions.

Facts and dimensions - Fact classes represent facts and the measures they are
interested in, defined as attributes within these classes. Dimension classes represent
dimensions.

Derived measures - They consider derived measures by placing the constraint /next
to a measure in the fact class. For example - number_of_clients, qty_sold and total_price.

Classification hierarchies - For dimensions, a base class represents every
classification hierarchy level. An association of classes specifies the relationships between
two levels of a classification hierarchy.The base classes, including the dimension class,
that belong to the classification hierarchy must contain an explicitly defined identifying
attribute. The writers do this by placing the constraint next to one attribute in every class.
This attribute is necessary to automatically generate the database schema from the UML
class diagram into a target relational OLAP tool because these tools store the attribute in
their meta-data to unambiguously identify every instance of a classification hierarchy level.

Relational commercial OLAP tools, however, use a default attribute within every
classification hierarchy level that will be used in the subsequent data analysis phase. A
default is a dimensional attribute that users want to analyze with a target commercial
OLAP tool. This default attribute displays every time the user applies an OLAP operation,
rather than having the tool prompt the user to specify which attribute to display before
executing each operation.

International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.5-6 -

Therefore, to plan for subsequent automatic generation into a target relational OLAP
tool, we must qualify the default attribute for every hierarchy level in our UML class
diagram. They call a default attribute a descriptor because they consider the term “default”
too general. Thus, they define a descriptor in every class that represents a classification
hierarchy level.

Dynamic level
They use cube classes to represent initial user requirements as the starting point for

the subsequent data-analysis phase. A UML-compliant class notation properly and easily
defines these classes.

The basic components
of the cube classes include
the:
• head area, which contains
the cube class’s name;
• measures area, which
contains the measures to
be analyzed;
• slice area, which contains
the constraints to be
satisfied;
• dice area, which contains
the dimensions and their
grouping conditions to
address the analysis; and
• cube operations, which

cover the OLAP operations for a further data-analysis phase.
Figure 3 shows both the graphical notation of the cube class that corresponds to data

requirement and its accompanying Object Query Language (OQL) specification. Figure 3a
shows that the measure area specifies the measure to be analyzed, qty_sold. Constraints
on dimension classification hierarchy levels—group and state—appear in the slice area,
and the classification hierarchy levels for which we want to analyze measures—family,
type, province and city—appear in the dice area. Finally, the cube operations section
specifies the available OLAP operations.

For nonexpert UML or database users, the cube class’s graphical notation facilitates
the definition of initial user requirements. Every cube class has a more formal underlying
OQL specification. Experts can use OQL to define cube classes by specifying the
appropriate OQL sentences.

CONCLUSIONS AND FUTURE WORK
The DDC allows graceful growth of the data cube in any directions, making it more

suitable for applications within involve change or growth.
For further work in direction “dynamic data cube”:
- to develop method of constraining the space requirements of the dynamic data cube

of the full data cube size by deleting unnecessary data;
- to discuss the properties of the DDC which enable it to handle sparse and clustered

data, as well as empty regions of the cube, efficiently.
OO Conceptual models of data cube are a very interesting direction for constructing

and using efficiently information extracted from data cube.
OLAP tools implement a multidimensional model from two different levels:
• Structural—the structures that form the database schema and the underlying

multidimensional model—also known as the metadata—that provides the model’s key
semantics (facts, measures, dimensions).

Figure 3.(a) Cube class example with parameters specified in the
measures, slice, dice, and operations areas; (b) the class’s

corresponding Object-Query Language specification.

International Conference on Computer Systems and Technologies - CompSysTech’2004

- V.5-7 -

• Dynamic—refers to the definition of final user requirements and OLAP operations for
further analyzing data.

For further work in this direction:
- to develop appropriate class definition for data cube;
- to add additional properties in class for further analyzing.

REFERENCES
[1] Agarwal S., R. Agrawal, P. Deshpande. On the Computation of Multidimensional

Aggregates In Proceedings of the .22nd international Conference on Very Large
Databases, 506-521, Mumbai (Bombay), 1996.

[2] Chaudhuri S., U. Dayal. An overview of datawarehousing and OLAP technology,
ACM SIGMOD Record 1997, 26(1):65-74.

[3] Geffner S., D. Agrawal, A. El Abbadi, T. Smith. Relative Prefix Sums: An Efficient
Approach for Querying Dynamic OLAP Data Cubes, In Proc. of the 15th International
Conference on Data Engineering, Sydney, Australia, March 1999.

[4] Gray J.,A. Bosworth, A. Layman, H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-total, In Proceedings of the 12Th. IEEE
International Conference on Data Engineering, 152–159, New Orleans,LA, February -
March 1996

[5] Kotidis Y., N. Roussopoulos, An alternative storage organization for ROLAP
aggregate views based on cubetrees, ACM SIGMOD Record 1998, 27(2): 248-258

[6] Lewis P., Database and Transaction Processing: An Application – Oriented
Approach, Addison Wesley, New York, 2003

[7] Molina.H, J. Ullman, J. Windom, DataBase Systems: The Complete Book,
Prentice Hall, 2002, 1119p.

[8] Mumick S., D. Quass, B. Mumick, Maintenance of Data Cubes and Summary
Tables in a Warehouse, In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 100-111, Tucson, Arizona, May 1997.

[9] Palpanas T., Knowledge discovery in data warehouses, ACM SIGMOD Record,
September 2000, 29(3)

[10] Trujillo J., M. Palomar, J. Gomez, Y. Song. Designing Data Warehouses with OO
Conceptual Models, Computer, 66-75, December 2001, IEEE

[11] Ullman J., Efficient Implementation of Data Cube Via Materialized Views,
http://db.stanfort.edu/~ullman

[12] Vassiliadis P., A Survey of Logical Models for OLAP Databases. ACM SIGMOD
Record, December 1999, 28(4)

[13] Widom J., Research Problems in Data Warehousing, Proc.4th Intl. CIKM
Conference., 1995.

[14] Zhao Y., P. Deshpande, J. Naughton. An Array-Based Algorithm for
Simultaneous Multidimensional Aggregates, In ACM SIGMOD International Conference,
159-170, Tuscon, AZ, USA, June 1997.

ABOUT THE AUTHOR
Antoaneta Ivanova, PhD Student, Department of Computer Sciences and

Technologies, TU-Varna, Phone: +359 899 885 497, E-mail:antoaneta_ii@yahoo.com
Assoc.Prof. Boris Rachev, Ph.D., Department of Computer Sciences and

Technologies, TU-Varna, E-mail:Rachev@ieee.bg

