
International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIB.12-1 -

A Flexible Table Driven LR(1) Parser

Stoyan Bonev

Abstract: The implementation of a flexible table driven LR(1) parser is presented in this paper. The

LR(1) parsing algorithm is based on modified bottom up strategy described in [1] and it stays the same for all
grammars. A parser with control tables that are initialized within the source text has no flexibility because
each new LR(1) parser implementation needs to recompile the source text in order to adjust its data control
structures like terminal symbols, non terminal symbols, grammar rules and control table. To avoid this
drawback a configuration text edited file is to be created and read as input to adapt the parser before the
syntax analysis process starts execution.

Key words: Syntax Analysis, Table Driven LR(1) Parser, LR-situation, Configuration File.

INTRODUCTION
There exist a variety of top-down and bottom-up parsing strategies applicable in the

area of theory and practice of compiler writing. The LR(k) approaches like LR(1), SLR(1),
LALR(1) are known to be the most powerful syntax directed table controlled parsing
strategies [2, 3 and 4]. A modified LR(1) parsing method was presented in [1] and its
program implementation was discussed in [5]. Central term in this approach is the concept
of LR-situation or LR-position – a structure composed of two components X,m. X stays
for any terminal or non terminal character and m is a specific subscript indicating the
location of the X character within the productions of the grammar. The usefulness of this
subscript is that it helps to distinguish during the parsing process the same concrete
terminal or non terminal character in case it appears more than once within the simple
phrases (right sides of the grammar productions). To illustrate this, the context free
grammar (CFG) of simplified arithmetic expressions and its modification as a grammar
with LR-situations are presented in the three-column Table 1. The grammar rule number is
to be used as a subscript attached to all terminal and/or non terminal symbols in the right
side of the corresponding production.

 Table 1
Rule No Arithmetic expressions grammar Modified arithmetic expressions

grammar with LR-situations

0
1
2
3
4
5
6

 E' −> ^ E #
 E −> E + T
 E −> T
 T −> T * F
 T −> F
 F −> a
 F −> (E)

 E' −> ^ E0 #
 E −> E1 +1 T1
 E −> T2
 T −> T3 *3 F3
 T −> F4
 F −> a5
 F −> (6 E6)6

The advantage of this enriched CFG grammar notation is that when dealing with LR-

situations grammar during the parsing process and operating the non terminal F for
example, one can differ it as the last character of the phrase T * F (grammar rule 3) or
as a sentential form presenting the sole phrase F (grammar rule 4).

The way of enumerating numbers to all terminal and non terminal symbols follows
the only condition: assignment of a unique number. The above example illustrates that
there are no duplicated symbols in the right sides of the grammar rules. That is why the
grammar rule number was selected to be assigned to each of the symbols as a component
of the LR-situation.

In this way the bottom-up parsing algorithm instead of pushing/popping terminal

International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIB.12-2 -

and/or non terminal symbols will operate – pushing and popping LR-situations that
constitute the stack alphabet. The example above supposes the following set { ^, E0,
E1, +1, T1, T2, T3, *3, F3, F4, (6, E6,)6 } to be considered as a stack
alphabet.

For more details on the algorithm and its implementation see [1, 5].

PROGRAM IMPLEMENTATION
The drawback of the LR(1) parser implementation presented in [5] is that all grammar

data structures for symbol presentation of terminal symbols, non terminal symbols,
grammar rules, starting non terminal, bottom stack symbol and LR situations control table
were initialized within the source text of the parser. This approach has no flexibility and
leads to loss of generalization because each new parser implementation requires
recompilation of the parser source text substituting the control data structures before that.

In order to avoid this shortcoming the following was done. Instead of initializing the
grammar data structures mentioned above, within the source text of the parser, a
configuration text edited file was created to include and store the symbol presentation of
the grammar structures. During execution time configuration file should initially be read
before the parsing process starts. So, we get an advantage: to implement a new LR(1)
parser, we will need to create a new configuration file and no recompilation of the parser
source text is required. The skeleton parser may be adapted to operate as LR(1) syntax
analyzer for any formal language whose grammar is specified in accordance with the
requirements to compose the configuration file. So, the parsing program from [5] is
transferred to more general reference as an adjustable table-driven parser that operates
based on bottom up LR(1) syntax analysis strategy.

The following Table 2 illustrates the configuration file components and their
correspondence to the data structures utilized in the parser.

 Table 2
Configuration file component Data structure

[alphabet – set of terminal
symbols]

char TermCh[]; int NumTerm;

[syntax categories – set of non
terminal symbols]

char NonTermCh[]; int NumNonTerm;

[starting non terminal symbol] char StartNonTerm;
[productions – set of grammar
rules]

struct GramRule {
 char LeftPart;
 char *RightPart;
 int ProdLen;
 };
GramRule gr[]; int NumGrRules;

[LR situations control table] struct CtrlTabElm
 {
 char action; // actions 'S'-Shift 'R'-Reduce
 // 'E'-Error 'A'-Accept
 int LRposOrRuleNum; // LR_situation nmr or
 //Grammar rule number
 };
CtrlTabElm CtrlTab[][];
int NumRowCtrlTab; int NumColCtrlTab;

[bootom stack marker] char BottomStack;
[input file terminal delimiter] char EofDelimiter;

The basic algorithm is spilt in two principle functions: to read the configuration file

and to activate the parser.

International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIB.12-3 -

int main(int argc, char *argv[])
{
 ReadCfgFle(argc, argv);
 LrkParse();
 return 0;
}

The configuration file contents that is to be used to adjust the syntax analyzer as a

simplified arithmetic expressions parser follows:

[terminal characters]
5
a + * ()

[nonterminal characters]
3
E T F

[starting nonterminal]
E

[grammar rules]
6
 E −> E+T, ,3 ,
 E −> T, ,1 ,
 T −> T*F, ,3 ,
 T −> F, ,1 ,
 F −> a, ,1 ,
 F −> (E), ,3

[control table rows x columns]
12 9
// a + * () E T F #
{ SHIFT5, ERR, ERR, SHIFT6, ERR, SHIFT8, SHIFT8, SHIFT4, ERR }, // #,0
{ ERR, SHIFT1, ERR, ERR, ERR, ERR, ERR, ERR, ACCEPT }, // E,8
{ SHIFT5, ERR, ERR, SHIFT6, ERR, ERR, SHIFT9, SHIFT4, ERR }, // +,1
{ ERR,REDUCE2, SHIFT3, ERR,REDUCE2, ERR, ERR, ERR,REDUCE2 },// T,8
{ ERR,REDUCE1, SHIFT3, ERR,REDUCE1, ERR, ERR, ERR,REDUCE1 },// T,9
{ SHIFT5, ERR, ERR, SHIFT6, ERR, ERR, ERR, SHIFT3, ERR },// *,3
{ ERR,REDUCE3,REDUCE3, ERR,REDUCE3, ERR, ERR, ERR,REDUCE3 },// F,3
{ ERR,REDUCE4,REDUCE4, ERR,REDUCE4, ERR, ERR, ERR,REDUCE4 },// F,4
{ ERR,REDUCE5,REDUCE5, ERR,REDUCE5, ERR, ERR, ERR,REDUCE5 },// a,5
{ SHIFT5, ERR, ERR, SHIFT6, ERR, SHIFT9, SHIFT8, SHIFT4, ERR },// (,6
{ ERR, SHIFT1, ERR, ERR, SHIFT6, ERR, ERR, ERR, ERR },// E,9
{ ERR,REDUCE6,REDUCE6, ERR,REDUCE6, ERR, ERR, ERR,REDUCE6 },//),6

[bottom stack marker]

[input file terminal delimiter]

The input data for the control table only is to be commented: The number of rows
(12) and number of columns (9) are explicitly declared. The control table columns (array

International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIB.12-4 -

ColumnTitle[]) are labeled with all terminal symbols (array TermCh[]) followed by all non
terminal symbols (array NonTermCh[]) followed by the terminal delimiter of the input
stream (EofDelimiter).

The control table rows (array RowTitle[]) are labeled using LR situations X,m that
appear at the end of each line with data for the control table rows.

The data elements for the control table entries have the form
SHIFTxx or
REDUCEyy or
ERR or
ACCEPT

SHIFT, REDUCE, ERR and ACCEPT are recognized as case insensitive reserved
words to specify the Shift,xx or Reduce,yy or Error or Accept actions of the parsing
algorithm.

xx is a string concatenated to SHIFT and composed of digits specifying the LR
situation to create pushing to the stack the symbol, naming the control table column.

yy is a string concatenated to REDUCE and composed of digits specifying the
grammar production number to apply in order to substitute (reduce) the right side of rule
numbered yy configured on the top of the stack with its left hand side non terminal
symbol.

The scanning process of the input data file and the configuring of the control table is
based on the strtok run time library function which operates in the following loop:

fgets(InpBuf, 120, fp); // read the number of rows and columns
 NumRowCtrlTab = atoi(strtok(InpBuf," "));
 NumColCtrlTab = atoi(strtok(NULL," "));
 fgets(InpBuf, 120, fp); // read the comment line
 for (i=1; i<=NumRowCtrlTab; i++)
 {
 fgets(InpBuf, 120, fp); // read the current row of the control table
 ptr = strtok(InpBuf," {},/"); // the first component to be processed
 if(strnicmp(ptr, "SHIFT", 5)==0){ ptr=ptr+5;
 CtrlTab[i][1].action = 'S';
 CtrlTab[i][1].LRposOrRuleNum = atoi(ptr);
 }
 else if(strnicmp(ptr, "REDUCE", 6)==0){ ptr=ptr+6;
 CtrlTab[i][1].action = 'R';
 CtrlTab[i][1].LRposOrRuleNum = atoi(ptr);
 }
 else if(strnicmp(ptr, "ERR", 3)==0){
 CtrlTab[i][1].action = 'E';
 CtrlTab[i][1].LRposOrRuleNum = -5;
 }
 else if(strnicmp(ptr, "ACCEPT", 6)==0){
 CtrlTab[i][1].action = 'A';
 CtrlTab[i][1].LRposOrRuleNum = 0;
 }

 for (j=2; j<=NumColCtrlTab; j++) // the rest part of the line includes all components
 {
 ptr = strtok(NULL," {},/"); // inclues all components minus 1
 if(strnicmp(ptr, "SHIFT", 5)==0){ ptr=ptr+5;
 CtrlTab[i][j].action = 'S';
 CtrlTab[i][j].LRposOrRuleNum = atoi(ptr);

International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIB.12-5 -

 }
 else if(strnicmp(ptr, "REDUCE", 6)==0){ ptr=ptr+6;
 CtrlTab[i][j].action = 'R';
 CtrlTab[i][j].LRposOrRuleNum = atoi(ptr);
 }
 else if(strnicmp(ptr, "ERR", 3)==0) {

 CtrlTab[i][j].action = 'E';
 CtrlTab[i][j].LRposOrRuleNum = -5;
 }
 else if(strnicmp(ptr, "ACCEPT", 6)==0){

 CtrlTab[i][j].action = 'A';
 CtrlTab[i][j].LRposOrRuleNum = 0;
 }
 } // end of j loop

 // now to read and store the RowTitle[i].Symb and RowTitle[i].LRpos componennts
 ptr = strtok(NULL," {},/");
 RowTitle[i].Symb = *ptr;
 ptr = strtok(NULL," {},/");
 RowTitle[i].LRpos = atoi(ptr);

 } // end of i loop

The parser is implemented in two versions based on the MS Visual C++ analogy:

Release and Debug.
In case of input strings accepted as valid sentences:
 The Release version output results the reverse order for the right canonical analysis

of the recognized input string.
The Debug version output is composed as a detailed report tracing the parsing

process step by step and displaying the top stack value, the row and column indexes for
the control table, the control table entry and a marker (*) indicating a grammar rule was
reduced and registered as an element of the final result – sequence of production numbers
constituting the right canonical analysis in reverse order.

In case of input strings rejected as invalid sentences:
 Both Release and Debug versions generate error messages diagnosing the errors

reasons like “Invalid input character”, or “Control table Error entry”, or “Control table Shift,I
expected”.

The protocol of the parsing process for the elementary a + a input string follows:
Enter input string to parse: a + a
Compressed input string to parse is:a+a#

Top_stack Pair_to_compare Ctrl_Table_value Output

#0 #0,a SHIFT ,5
a5 a5,+ REDUCE,5 *
#0 #0,F SHIFT ,4
F4 F4,+ REDUCE,4 *
#0 #0,T SHIFT ,8
T8 T8,+ REDUCE,2 *
#0 #0,E SHIFT ,8
E8 E8,+ SHIFT ,1
+1 +1,a SHIFT ,5

International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIB.12-6 -

a5 a5,# REDUCE,5 *
+1 +1,F SHIFT ,4
F4 F4,# REDUCE,4 *
+1 +1,T SHIFT ,9
T9 T9,# REDUCE,1 *
#0 #0,E SHIFT ,8
E8 E8,# ACCEPT

 Successful parsing, input string accepted
The reverse order right canonical syntax analysis result is: 5 4 2 5 4 1
Enter new input string to parse or CTRL/Z to quit:

FUTURE DEVELOPMENT
The potential possible improvement is to implement a control table generator using

the symbol presentation of the grammar rules as input. In this way the user will not need to
manually synthesize the control table. The adjustable LR(1) parser discussed above will
convert into a user friendly computer aided software tool similar to the well known popular
YACC, Bison etc. utilities reading symbol grammar presentation and generating the source
text of bottom up LR parsers. For the compatibility reasons the input grammar specification
should be modified to follow the format required by YACC.

CONCLUSION
The LR(1) parser presented was written in C++ and executes as MS-DOS application

as well as a console application under Windows. It serves as a sample demo program
illustrating details of bottom up-syntax analysis strategy when teaching students in
language processors and compiler theory courses.

REFERENCES
[1] Yankov B., Translators and Operating Systems, Sofia, Tehnika Publ., 1993, (in

Bulgarian).
[2] Tremblay J.P., P.Sorenson, The Theory and Practice of Compiler Writing,

McGraw Hill Book Company, 1985.
[3] Aho A., R.Sethi, J.Ullman, Compilers, Principles, Techniques and Tools, Addison

Wesley Publishing Company, 1986.
[4] Aho A., J.Ullman, The Theory of Parsing, Translation and Computing, vol. 1,2,

Prentice Hall, 1973.
[5] Bonev S., Implementation of LR(1) Parsers, Proc of the 16th Int. Conf. Systems for

Automation of Engineering and Research SAER 2002, Varna, Bulgaria, pp 149-153.

ABOUT THE AUTHOR
Assoc.Prof. Stoyan Bonev, PhD, Department of Computer Science, The American

University in Bulgaria, Phone: +359 73 888 416, Е-mail: sbonev@aubg.bg.

