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Recurrence equation as basis for designing hot-potato routing 

protocols 
 

Ville Leppänen and Martti Penttonen 
 

Abstract: In this work we demonstrate the use of generating functions for solving recurrence 
equations, which can occur e.g. in the analysis of routing protocols.  We prove an exact bound for the 
expectation of packets reaching their target in a torus, when the routing protocol makes the packets to favor 
with probability p in each node a diagonal route to their target.  Higher probability increases expectation of 
successful packets.  We consider designing routing protocols according to the scenario and compare them 
to known results. 
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INTRODUCTION 
Often we can analyze the probability (or complexity) of a complex phenomenon 

recursively: Assuming we can reduce any instance of the problem to a “smaller'' instance 
of the problem, and we can evaluate the probability of the reduction, and we can also 
evaluate the probability of the “small'' problem instances, then we can evaluate the 
probability of any problem instance. However, even though such a group of recurrence 
equations can be used for the computation of probabilities, solving these equations and 
providing a direct formula for the probability may prove out to be a very difficult task. 

In this work we show, how generating functions can be used to solve a recurrence 
equation.  We consider designing hot-potato routing algorithms that are could be 
characterized by the following recurrence equation 
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Hot-potato routing on torus 
 A routing strategy used to resolve output port contention problem in packet-switched 

interconnection networks is the hot-potato or deflection routing strategy.  In the hot-potato 
routing all entering packets must leave at the next step - i.e. packets cannot be buffered as 
in the store-and-forward routing strategy.  In general, in each node the out-degree must be 
at least the in-degree, the output port contention must be resolved somehow.  If there are 
multiple packets preferring the same output port, the routing strategy must select at most 
one for each out-going link. 

 An out-going link is good for a packet, if it takes the packet closer to its destination.  
Other links are bad for that packet.  Notice that several links might be good for a packet.  A 
packet is said to deflect at a node, if the routing strategy assigns it to a bad out-going link.  
See e.g. [10] for definitions and a survey of hot-potato routing techniques and results. 

Consider a two-dimensional n x n one-way torus as shown in Figure 1.  Let the lower 
left corner have position (0,0).  By one-way property we mean that links are directed as in 
Figure 1.  When routing a packet e.g. from (k,l) to (0,0), it means that there are several 
shortest paths of length k+l in the k x l rectangular area between the nodes, but it is also 
possible for a packet to drop out of the rectangular area - each drop out increases the 
route length by n.  The only bad links are those through which a packet drops out. 
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To avoid drop outs, it would seem wise to try to stay as far away from the edges as 
possible - i.e. to try to get close to the diagonal (see Figure 1) and then follow a diagonal 
route to the target.  The Equation 1 characterizes the success probability of routing in a 
one-way two-dimensional grid, when packets tend to choose, with bias p, a diagonal route 
from node (k,l) to (0,0). Note that due to one-way property the success probability is less 
than 1, because the packets may drop out. 

 
Figure 1. A 6 x 6 torus.  Lower left corner is (0,0).  Dotted area represents the 

rectangular area for packet targeted to (0,0) from node (2,4). Diagonal with respect to 
target node (0,0) is also shown. 

 
Observe that from the view point of each target node (lower left corner in Figure 1) 

the approaching packets form an approaching front. In one-way torus, only the packets in 
a front at distance d can affect the route of a packet at distance d. 

 
Results 
Constructing routing algorithms for meshes and tori is studied in several papers.  The 

problems studied as well as assumptions concerning the routing machinery differ quite a 
lot, see [4].  In [3,5,7,11], routing on various sparse meshes and tori are studied, but 
assumptions differ so much that fair comparison is not possible.  Many of the results are 
asymptotic, although recently also analysis of the exact cost is done experimentally as well 
as analytically [1,2,5]. 

In this paper, we present a novel analysis of a recurrence equation, which can be 
used to characterize certain routing algorithms.  Our analysis gives the exact expected 
routing cost.  In Section 2 we present the analysis, and then in Section 3 we consider 
constructing routing algorithms that could be characterized with Equation 1. 
 

ANALYSIS OF RECURRENCE EQUATION 
Let p be a constant such that 10 ≤≤ p  and let P(k,l) be a function defined by the 

recurrence Equation 1. Can we estimate the values of P(k,l)?  When p=3/4, denote 



International Conference on Computer Systems and Technologies - CompSysTech’2004 
 
 

 

 

 
- IIIB.1-3 - 

),( kkPQk = , and calculate 10 =Q , 4/31 =Q , 64/452 =Q , 1024/7023 =Q , …, kQ  appears 
to approach 2/3. Indeed, this is the case. We can prove generally 
 
Theorem 1. 
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To prove (a), denote q=1-p and let ),( kkPQk = . When computing kQ  recursively, 

computation starts with a ``diagonal'' number kQ  and ends at the ``diagonal'' number 0Q , 
and there may be other ``diagonal'' numbers jQ , 0<j<k, in intermediate phases of the 
computation. 

  Assume we already know jQ , for all j<k. We reduce the computation of kQ  to these 
values as follows. Consider paths from node (k,k) to node (0,0) in integer grid 
{ }kjiji ≤≤ ,0|),( . Now  
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 In this formula, 2 comes from the fact that on a path form (k,k) to (0,0) we return first 
to the diagonal point (k-j-1,k-j-1) either from the upper side of the diagonal or from the 
lower side of the diagonal. Each term in the sum corresponds to the first point on the 
diagonal (k,k), (k-1,k-1), …,(1,1), (0,0), where we first come after leaving (k,k).  jC  is the 
number of paths from (k,k) to (k-j-1, k-j-1) that do not contain any diagonal points (k-1, k-
1), …, (k-j,k-j).  It is easy to see that among the edges of each path leading from (k,k) to (k-
j-1, k-j-1), there is one that leaves (k,k) with probability 1/2, there are j edges that diverge 
from the diagonal  with probability q, and there are j+1 edges that converge towards the 
diagonal  with probability p. Finally, the probability of reaching (0,0) from (k-j-1,k-j-1) is 

1−− jkQ . The numbers jC  are known in literature as Catalan numbers, and we know 
 

Lemma 1. [6] ∑
∞

=

−−
==

0 2
411)(

i

i
i z

zzCzC  

Analogously, denote ...)( 2
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for even n.  The same argument applies for odd n.  Hence, 
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SYNTHESIS OF ROUTING ALGORITHMS 
Consider that P(k,l) denotes the expectation for a packet to reach its destination that 

is k vertical and l horizontal steps away from the current position in a 2-dimensional one-
way torus.  In that case, Theorem 1b gives an expectation for a (randomly chosen) packet 
to reach its destination that is n steps away. 
 

As a special case of Equation 1, consider 
 

If we could construct a hot-potato routing protocol that is always able to forward with 
probability 3/4 a packet toward the diagonal of its destination node, then by Theorem 1b 
the expectation for an arbitrary packet to reach its destination is 1/3. 

Notice also that if p=1/2 in Equation 1, then by Theorem 1b the expectation for a 
packet to reach its target approaches 0.  I.e. arbitrarily forwarding the packets is not useful. 

Next, assume that the torus is sparse - i.e. only the nodes marked with square are 
nodes (processors) that can produce and consume packets.  Routing on such sparse 
meshes and tori are studied in [3,5,7,11].  
 

Randomized diagonal routing 
Consider first a simple diagonal protocol P1 in one-way sparse torus, where packets 

always aim toward the diagonal leading to its target and priority is assigned randomly to 
the packets.  With probability 1/2 a packet can choose the link in the node. 

In “fresh'' average case routing situation, when target addresses are almost random, 
even in the other case, when the other packet chooses first, our packet has equal chances 
to become forwarded toward the diagonal.  Thus, initially the setting works with respect to 
Equation 1.  When the routing proceeds, the packets that interact with each other are less 
and less random - their targets are closer to each other and the risk that forced move 
leads farther away from the diagonal increases.  Thus, applying p=3/4 for Equation 1 gives 
upper bound for the efficiency of P1. Our experiments [5] confirm this. 

How the protocol P1 could be improved?  Basically we need to find ways to restrict 
other packets ability to push packets over the edge of rectangular area.  There are two 
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ways to do this: (1) Improve to protocol so that for each packet there is a smaller set of 
packets that can drop it out the rectangular area, or (2) make the set of packets moving in 
the routing machinery more homogeneous.  We present a protocol for both cases. 

 
Improved diagonal routing 
Next consider a protocol P2, where packets again always aim toward the diagonal, 

and higher priority is given to the packet that is (1) closer to its target and (2) farther away 
from the diagonal leading to its target.  In a tie situation, priority is assigned randomly. 

When modeling P2 with Equation 1, the initial situation appears to be the same as in 
protocol P1.  However, rest of the routing process cannot be modeled with Equation 1, 
since the probability of staying within the rectangular area is now much more predictable.  
A crucial observation is that a packet on the edge of rectangular area gets pushed over the 
edge if only if both packets are aiming at the same target (and a packet once pushed over 
the edge is not able to push more packets over the edge). 

This alone guarantees that if many packets try to get to the same target, one of them 
is successful. Consider the n packets that are being sent to their random destinations at a 
given moment of time.  The probability that none of the n packets tries to arrive at a fixed 
target is en n /1)/11( →− .  Hence, with probability 1-1/e there are packets coming to this 
destination, and at least one of them is successful.  Thus, the expectation for a packet to 
succeed is at least (e-1)/2e. 

The protocol P2 is actually better that the lower limit suggests, since in many case 
two packets arrive to a given target.  Analyzing the situation would be easier, if we 
additionally define (protocol P3) that packets are not allowed to cross over the diagonal.  In 
that case we can conclude that in random case there is at least one packet arriving from 
the left side to the target with probability 1-1/e.  The same holds for the other side.  Thus, 
the expectation for a packet to succeed is 63.0/)1( ≈− ee . 

It is interesting to observe that similar results [5] were proven for anti-diagonal routing 
protocol: A protocol were packets all the time try to ``walk'' along the edges of rectangular 
area. 

 
Homogeneous set 
The other way to decrease the number of packets able to push a packet is to assume 

that the initial distribution of packets is by no means random.  This is possible, if the nodes 
have a lot of packets to send and it is possible to maintain some kind of sorted order of 
them. 

Consider a case, where each source sends two packets whose target is k+l steps 
away - first is such that it needs to go k steps horizontally and l steps vertically, and vice 
versa for the other packet.  In such case, it is quite easy to see that even the protocol P1 
moves the packets so that they all reach their diagonal after |k-l| steps, and after that they 
move without any conflicts (almost along the diagonal) to their target.  The situation can be 
modeled with Equation 1 - using probability p=1.0, which by Theorem 1b gives expectation 
1 for a packet to reach its target. 

A natural relaxation of this setting is to assume that each source only sends packets 
that are targeted to an area of size 1>∆  for both sides of each sender (in the above case 

1=∆ ).  This allows us to construct settings for which the probability p in Equation 1 varies 
between 0.75 and 1.0. 
 

CONCLUSIONS AND FUTURE WORK 
We have proved a solution for a recurrence equation that can be used to model 

several routing situations in tori networks.  We used the recurrence equation as a basis for 
designing routing protocols and situations.  Considering the equation gives hints how to 
improve routing.  
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 Extending the results to two-way sparse tori is straightforward. As a future work we 
suggest extending the results to routing situations in ordinary tori. 
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