
International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIA.18-1 -

Interface and Control Manager for Parcels Sorting

Atanas Atanassov

Abstract: The paper presents the development of an Interface and Control Manager (ICM) intended to
sort automatically parcels in Swiss POST. The main purpose of the ICM is to replace existing IBM sorting
system, providing better sorting quality. ICM uses complete or partial address data provided by SIEMENS
Parcel Address Reader (PAR). It verifies the data and sends appropriate control information to all existing
IBM servers and sorting machines. For parcels dispatching multithreading and scheduling approaches
similar to these used in real-time and parallel systems are applied.

Key words: Multithreading, RTOS-Scheduling, Parallel Systems, Object- Oriented Programming.

INTRODUCTION
The Interface and Control Manager (ICM) provides the interfaces of the SIEMENS

Parcel Address Reader (PAR) adapted to the IBM parcel processing environment PP2000
used by Swiss POST. The PAR is the replacement of the IBM Automatic Coding System
(ACS).

The purpose of ICM is to sort parcels efficiently. ICM communicates with proprietary
Siemens OCR algorithms (know how) to determine the receiver’s address from the parcel
surface. To be able to sort parcels correctly, ICM interacts with external IBM servers (see
Figure 1): Alive Monitor (AVM), Management and Database Server (MDS), Operational
Control System (BCS), Central Data Server (ZDS), Coding Line Control (CLC), Video
Coding System (VCS) and Parcel Data Server (PDS).

To be able to exchange information with external servers, ICM must conform to
specific message protocols as given in following paragraphs.

B r o k e r

IC M

C a m e r a
S c a n n e r

C L C

V C S

Z D S

S M A R T
- p r e o c r

S M A R T
- v e r i f y

S M A R T
- r e t r y

P A R

O th e r s ta n d a r d R 1 0 0 0
s y s te m p r o c e s s e s . . .

A V M B C S M D S

S C IF

Im g - F e
e d e r

D a ta
B a s e

P D S

Figure 1: ICM – PAR top-level process view

FUNCTIONAL DESCRIPTION

The Functionality provided by ICM is related to parcel sorting process and includes:
• Control of CLC in order to coordinate the movement of the parcels on the

transportation belt (stop, release parcels before scanning point, direct them to cross
switch unit directing the parcel to other conveyor belts)

• Communication with PAR barcode and address reading processes in order to
receive parcel barcodes, address data and dimensions.

International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIA.18-2 -

• When an identcode (unique parcel barcode) is available to check for available
address data on ZDS and if there is to use it to sort a parcel.

• If there is no address data on ZDS to use address provided by the PAR and to use
it to sort a parcel.

• If PAR is not able to provide address data to send VCS tile, VCS Address Block
Coding (ABC) or VCS Full Address Coding (FAC) requests.

• To use VCS or MCS address data to sort a parcel, in case PAR is not able to find
parcel address.

• To download specific address tables from BCS (on request from MDS) and to use
them to refine sorting process.

• To report any changes in the status or errors to MDS
• To report the meaning of some specific internal parameter, related with the parcel

sorting process, as well to change them on request from MDS
• Periodically to send alive messages to AVM and ping and to all other systems
• To store and send statistical data (about sorted parcels) to MDS
• To store and provide to PDS parcels’ barcode(s) and address images.

DESIGN OVERVIEW
As it told above the main purpose of ICM is to replace the existing ACS. ACS is

constructed as parallel machine including 4 independent PC supporting the automated
address recognition and one PC responsible for the communication with the external
systems.

ICM is developed as a NT process which consists of a set of intercommunicating
objects using threads to signal each other for different events. They implement the
interfaces to the existing external IBM systems. Communications to the external systems
are socket based using messages with different structure [1]. Internal communication and
synchronization between the ICM objects are based on events and critical sections.

Before taking a decision to use the multithreading model of ICM some other models
were analyzed. It turned out that the model of ICM consisting of one process with some
independent threads was more efficient than the model of building ICM as a number of
intercommunicating processes because the inter-process communication is more time
consuming than inter-thread communication. The same was valid for the model based of a
pool of threads some of which serving the external communications and others related
with each processed parcel.

Inside ICM process the following objects and threads, listening for their corresponding
events exist:

• ICMMain – object that performs the needed tasks to sort parcels.
• AVMTalk – object handling the communication with AVM monitor
• MDSBCSTalk – object handling the communication with MDS and BCS systems
• ClcCon – thread responsible to support the interface to CLC.
• RfCon - object implementing the interface to RF.
• MessageDispacher – dispatches PP2000 messages
• PDSTalk – object handling the communication with PDS server
• ImageHandler – handling and deleting images needed for ABC and FAC requests.

Additional special purpose objects exist:
• SharedMem - shared memory for all ICM objects.
• ParcelProcessingTable - table of parcels that are currently processed by ICM
• Statistic - statistic storage and generation class

IMPLEMENTATION DETAILS
In general ICMMain thread is responsible for:

International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIA.18-3 -

• Creation of shared memory object that stores common data specific for all ICM
objects

• Creation of parcel processing table that records the data for all currently coded
parcels

• Creation of statistical object that collects data for already processed parcels
• Creation of the image handler object supporting VCS and PDS systems
• Downloading and updating of tables needed from PAR or for PDS processing
• Buildings of all other objects described below that are responsible for normal parcel

processing and for communications with the external systems.

Figure 2: SPICM internal objects view

The following pseudo code of ICMMain shows the basic structure of the implementation:

Create and initialize SharedMem, Statistic, ImageHandler
Create sockets to communicate with external systems
while (icm_is_alive) {
 wait for event
 analyse event
 switch (event) {
 BROKER: analyze OCR results
 ZDS: SRSP as reply to QSR received
 PDS: message from PDS arrived(ACK1/ACK2 or PING)
 CLC: new parcel arrived, create new SingleParcel
 VCS: VCS result arrived (ABC or FAC)
 AVMTalk: do nothing (AVM does not send any message)
 MDSBCSTalk: handle ENA, DISA, Update various tables

KEYBOARD: operator pressed a key at the keyboard
}

} //end of while (icm_is_alive)
Shutdown connections
Free memory for the SharedMem, Statistic, ImageHandler and the sockets

PAR

broker
SMART
-verify

SMART
-retry

SMART
-preocr

SCIF
ImgFeede

Came
ra

SPIC

AV

ZD

BCS

MD

VC

PD

CLC RF

cICMMain with

cParcelProcessing
Table

cAVMTa
cClcCocRfCon

cM
es

sa
ge

D
is

pa
ch

er

cStatistic

cImageHand

cMDSBCST

International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIA.18-4 -

The Broker thread / object communicates with the PAR processes from which it

obtains complete or partial parcels data (Identcode, address, dimensions, images of the
address and other ROIs, etc).

The responsibilities of AVMTalk can be summarized as establishing of TCP/IP
connection to AVM using AVM IP address and port number written in ICM.ini file; sending
HELO message to initiate message protocol; periodically to send AVE (alive) messages to
AVM. If a communication to AVM is disrupted then AVMTalk notifies ICMMain and tries to
reestablish the connection.

MDSBCSTalk performs the activities to establish TCP/IP connection to MDS and BCS
using MDS/BCS IP addresses and port numbers; it sends HELO message to MDS and
BCS to initiate the message protocol. Periodically MDSBCSTalk sends PING messages. It
has to answer or to send messages from/to MDS or BCS related with:

o setting of the status of ICM (MDS can enable or disable the normal
processing of ICM)

o Reporting of any changes of the status to MDS
o Event signaling
o Parameter handling (answering to queries for parameter values from MDS,

or setting new values for some of them or all)
o Supporting the operations with table distribution and activation
o Delivery of statistical data to MDS on request

If communication to MDS or BCS is disrupted then MDSBCSTalk notifies ICMMain and
tries to reestablish the connection.

ClcCon handles the communication to CLC. The steps performed by ClcCon are to

establish RS232 connection to CLC using the CLC COM number. After that to initiate
communication to CLC, to send periodically “echo” messages. To control parcels on CLC
belt using the messages as “Parcel at Release Point”, “Parcel Stop” and “Parcel Data
(ZIAC)” message. If communication to CLC is disrupted ICMMain is notified

PDSTalk handles the communication to PDS by establishing TCP/IP connection to

PDS using PDS IP address and port number. It sends HELO message to PDS to initiate
message protocol. Periodically sends PING messages. It sends RPP messages to inform
PDS where the data related with the big customers is placed (the parcel, barcodes and
address images). Mentioned images are prepared by the object ImageHandler and their
path is provided to PDS in order to be downloaded. When communication to PDS is
disrupted then PDSTalk notifies ICMMain and tries to reestablish the connection.

The ICM process, as already mentioned, consists of a number of communicating

objects. SharedMem is the object used to keep information that is accessed from all other
objects – parameters, events, status, flags. Thus SharedMem is global memory storage for
all objects inside ICM. There exists only one SharedMem object. It uses in an internal
reference counting mechanism to keep track of the number of other objects that have
access to it. When one needs to use SharedMem he can access the object by calling
SharedMem::GetPtrSharedMem(). If the object already exists – pointer to it is returned and
number of references is increased. If the object dos not exist – it is created and number of
references is set to 1. When the SharedMem object is no longer needed, then
void cSharedMem::ReleasePtrShareMem(SharedMem*& ptr)

ReleasePtrShareMem() only decreases number of references to the current object.
If the number of references reaches 0, then SharedMem the object is freed. Because there

International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIA.18-5 -

exists only one SharedMem object, when one thread changes the value of some
SharedMem parameter, then all other threads will use the updated value.

The base class ConnectFlags for SharedMem plays special role. When connection
to some system is broken then an event (ConnectFlags:: GetConnectedHandle()) is
signaled. For example: If connection to AVM is broken then AVMTalk thread will signal the
event in ConnectFlags and ICMMain thread will be notified.

SharedMem:: AreICMConnectionsReady() returns true if all required connections
are established. If connections are established and ENA (enable message) from MDS is
received then parcel processing is allowed.

The ParcelProcessingTable object contains all required information for currently
processed parcels. ParcelProcessingTable is a container of a number of SingleParcel
objects.

For each parcel that is being processed ICM creates and maintains a SingleParcel
object. The SingleParcel has all the information that was gathered during parcel coding.
The information contained within SingleParcel is about the various time stamps as - time
when CLC ID was received, time when binary image was received, - time when barcodes
data is received or time when parcel geometry information was obtained, as well time
when automatic parcel decoding is finished, and QSR to ZDS was sent, etc. Other
important parcel data is CLC ID data, PAR ID data, parcel Identcode data, parcel
dimensions, zip code, street number, house number, type of the address, etc.

Only ICMMain uses ParcelProcessingTable during processing of parcels according
to the postal coding logic. ParcelProcessingTable is organized and can be interpreted as
scheduler queue. It is dispatched in the same way as the RTOS dispatcher works with the
tasks queue. As soon as one task is finished it is discarded from the queue. The same is
with the parcels. When the parcel data is finalized (completed) this data is sent to CLC and
ZDS and the parcel object corresponding to this parcel is deleted from the table (queue).

Every object/thread that sends IBM PP2000 messages uses MessageDispacher to send
them. Because CLC, Broker and VCS do not conform to PP2000 message formats and
protocols they do not need to use MessageDispacher to send messages – they use
directly ICMSock and ClcCon objects.

The structure of a typical message is built of a message header and several
message tags with fixed or flexible structure of the fields. For example the following
message QSR (Query for Transmission Records) has a format:
QSR ^10^0070^FRA-ACS37^FRA-ZDS ^001856^IDCOD^0019^994212769400039195^
The message header QSR ^10^0070^FRA-ACS37^FRA-ZDS ^001856^, describing the
name of the message (QSR), the sender station (ACS37) and the receiver (ZDS), as well
the transaction ID (001856). It has one tag IDCOD^0019^994212769400039195^
providing the 18 digits identcode number in the field next to the name of the tag (IDCOD).

Message that has to be sent is using the MessageDispacher::SendMsg() method.
The message dispatcher saves the transaction ID of the message in an internal table.
Every object can send simultaneously number of messages to external systems. The
object needs to know for which outgoing message, what is the reply from the external
system (ACK or NAK). When a reply from external system is received, the object calls
IsReply() method to check for which message this is a confirmation. When IsReply() is
called it searches its internal table with already sent messages and checks to see if there
is message with matching Transaction ID.

International Conference on Computer Systems and Technologies - CompSysTech’2004

- IIIA.18-6 -

For example if we send HELO message to MDS, MessageDispacher keeps the
message because it might need to retransmit it.
MessageDispacher performs these functions automatically:

• sends the message through the socket
• if reply is not received (i.e. IsReply() called) in the defined time frame the message

is retransmitted again. If the message is retransmitted to N ways (where N is a
parameter from SharedMemory table) then the message is marked as :EXPIRED.

MessageDispacher handles special cases with QSR, FTP2 and RPP messages when
instead of ACK appropriate confirmation message is used (to QSR an answer is SRSP).

Through the Statistic class the statistics for a parcel are saved and various statistics
request are made. The function Statistic::SaveStatistics(SingleParcel* parcel) is called just
before the record for the parcel is freed from ParcelProcessingTable. This function inserts
into several log files. The data from the statistical log files is required periodically by MDS
and can be used on the management level. Statistical information is collected for the
period of time defined by parameter and after this period old data is forgotten.

The object ImageHandler is responsible for storing and deleting the parcels image data
needed for VCS ABC or FAC coding or from the PDS. It supports mechanism to store
image data for period of time defined as a configuration parameter. All images older than
this time frame are deleted.

CONCLUSIONS AND FUTURE WORK
The presented ICM module passed the acceptance tests and ensures the needed by

the customer quality of parcels sorting. It is able to sort from 83.5% to 99.5% of the input
parcels automatically, depending on their shape and surface. Using the accumulated
parcels statistical data some online readjustments of the CLC speed can be obtained. This
way the CLC speed can be accelerated up to 25% that means more processed parcels per
hour. It will be done in the near future as a part of next assignment. At the moment ICM is
working in Swiss (Frauenfeld POST sorting center).

REFERENCES
[1] IBM PP2000 Project Message Format Description, IBM Corporation, 2001.
[2] IBM PP2000 Interfaces Communication. IBM Corporation, 2001.
[3] Ruediger A., Using Multithreading and C++ to Generate Live Objects, Microsoft

Developer Network Technology Group, 1993

ABOUT THE AUTHOR
Senior Lecturer, Atanas Atanassov, MSc, Department of Computer Sciences,

University of Chemical Technology and Metallurgy, Sofia, Phone: +359 02 6254 624, Е-
mail: naso@uctm.edu.

