
International Conference on Computer Systems and Technologies - CompSysTech’2004

Aspects Pattern Oriented Architecture For
Distributed Adaptive Mobile Applications

Dimitar Birov

Abstract: Adaptive applications behave differently, according to changes on the environment.

Aspect oriented programming (AOP) propose approach of implementation of adaptability of a
software through special form of concern composition. In this paper we discuss how aspect-
oriented approach facilitates the design of distributed adaptive wireless applications and propose
integrated software architecture framework based on known (aspect) design patterns architecture
building approach. proposed framework allows to achieve appropriate level of middleware
transparency, consistency, flexibility, maintainability, and modifiability of application.

Key words: Aspects, Aspect-Oriented Programming, Design Patterns, Middleware, Software
Architecture, Wireless Application

INTRODUCTION
To address the constraints imposed by mobile systems (and to take advantage of the

opportunities provided by these systems), it is necessary to abandon the current paradigm
[3] in software design where software capabilities are determined at build time. Aspect-
oriented programming (AOP) [10, 14] offers an alternative paradigm for software
development. Some middleware environments demand flexible software architecture and
functionality became a dynamic property and application can be adapted to the
environment at run-time.

Adaptive application means capability of application to modify its own behavior in
response of changes in its operating environment [21]. Adaptive applications behave
differently, according to changes on the environment. Implementing this kind of application
involves complex issues, so it is important to provide adaptive behaviour following quality
and productivity factors.

Aspect oriented programming (AOP) [10,14,16] propose approach of implementation
of adaptability of a software through special form of concern composition [2, 25].

In this paper we discuss how aspect-oriented approach (AOP) facilitates the design
of distributed adaptive wireless applications. We propose integrated software architecture
framework based on known (aspect) design patterns architecture building approach,
implemented with programming languages family tools such like Java, AspectJ, J2ME,
J2EE, Jini. This framework allows to achieve appropriate level of middleware
transparency, consistency, flexibility, maintainability, and modifiability of application.

Separation of concerns was recognized as a fundamental mechanism for managing
complexity of software systems. Software Engineering recognizes functional and
nonfunctional requirements to the software. Object oriented paradigm and design
technology capture well functional requirements and core concerns. Aspect Oriented
design and programming propose way for implementing nonfunctional or system-level
concerns.

Different parts of wireless distributed adaptive applications are discussed, developed
and designed in the software development community. In their AspectJ evaluation paper
Dantas and Borba [8] proposed closed-adaptive behaviour client side adaptive application
– it is not able to support the addition of new behaviour during runtime. Adaptive behaviour
should be programmed before deployment, but activated or deactivated in response to
environment changes. This constraint is imposed by compile time weaving mechanism of
ApectJ and missing of loading code at runtime in J2ME. They identify some adaptive
concerns such like Customization, Screen, Internationalization which are included as a
part of proposed architecture in this paper.

- II.17-1 -

International Conference on Computer Systems and Technologies - CompSysTech’2004

Design patterns, aspects and components are three orthogonal concepts [4] which

arised from a common source – idea to modularize software and deal effectively with
software complexity. In despite of that they are developed independently during last
decade, consequences of their interactions between three of them is not well studied and
hide a great potential towards the decision of software crisis problem. This issue is an
attempt to add to this subject.

AOP allows integration of the specific concerns – access control, distribution and
synchronization [18], real-time concerns [1] – into an existing application even if it affects
many decomposition units of the original application. From self-organization perspective,
the binding-time of the concern is crucial. For instance J2ME don’t allow building time
weaving. AOP can be implemented using compile-time [15, 24], load-time [7, 13] or run-
time [5, 17] binding techniques.

This report is organized as follow: next section introduces the aspect-oriented
concepts. Sections after that presents distributed aspect patterns, adaptability aspect
patterns, and some natural emerged aspect patterns integrated in common pattern
software architecture. Aspect implementations tied all them up in a consistent architecture.
Last section provides conclusions.

ASPECT ORIENTED PROGRAMMING
After Kiczales [14] clarified the meaning of AOP and gave a brief outline of its major

tenets, most of the current literature focuses on the challenges of crosscutting concerns or
the separation of concerns. Crosscutting concerns are elements of software, which cannot
be expressed, in any functional unit of the programming language's abstractions. In object-
oriented programming parlance, crosscutting concerns are elements of an application
which cannot be cleanly captured in a method or class and so has to be scattered across
many classes and methods. Such concerns include: applying design patterns, applying
synchronization policies, applying exception handling, error-checking or fault tolerance
concerns, sharing resources, security issues, performance measures, etc.

Aspect-oriented programming allows us to decompose software systems in different
dimensions. We can use a vertical decomposition process to establish the primary
decomposition model of the architecture. We then use aspect-oriented techniques to
”horizontally” compose or to ”superimpose” the implementation for orthogonal design
requirements onto the primary model, without modifying the existing architecture. We refer
to that decomposition process as the horizontal decomposition [28].

Aspect oriented solution consists of three parts: the application holds the application
or business code (called “core code”), the aspect part, where the aspect code resides and
a coordinating component, and weaving mechanism, provided by the AOP system.
Crosscutting concerns modularized as aspects are used to design (horizontal)
decomposition and are provided by aspect oriented language such as AspectJ.

In addition to conventional Java language features, AspectJ defines a set of new
language constructs to model the aspects. A joinpoint represents an interception point in
the execution flow of the component program. For convenience and elegance, a pointcut
construct can be used to denote a collection of joinpoints. Actions can be triggered before,
after, or in place of the program execution when a joinpoint is reached. These actions are
defined using aspect language specific constructs called advices. An aspect module in
AspectJ contains pointcuts and the associated advices. It also contains intertype
declarations, which are reused to declare new members (fields, methods, and
constructors) in other types.

The ability to switch aspects on and off during runtime [20] allows to change the
aspect context of an application during runtime and every context change can alter the
code of “aspectized” methods. Every time a method of the object is executed this runtime

- II.17-2 -

International Conference on Computer Systems and Technologies - CompSysTech’2004

type is used to decide which aspectual code is executed in addition to/instead of the
original method.

DISTRIBUTED ASPECT PATTERN
Middleware is an enabling layer of software that resides between the application and

the networked layer of heterogeneous platforms and protocols. It decouples applications
from any dependencies on the underlying layers, which consist of heterogeneous
operating systems, hardware platforms and communication protocols. Middleware is a key
component in integrating highly distributed, mobile, computing resources. Middleware
layer decouple the deployment of services from the underlying network infrastructure. This
middleware layer should provide interfaces to application service providers (API).

Implementation of a distributed application requires distribution of modular
components among locations [26]. Conventional Object-Oriented Programming (OOP),
doesn’t offer easy way of changing the design decision about distribution, because of
tangled code (code with different concerns interlacing to each other) and scattered code
(code regarding one concern spread in several units of the system). AOP offers an
appealing approach since it allows the design decisions regarding different distributions
policies to be specified separately, making it easy to design them and to switch from one
to another [6].

The natural appeal of AOP to distributed applications stems from the fact that
flexibility, easy of use, and usability of distributed applications engender the evolution of
many middleware technologies. Implementation of distributed system requires taking into
account following requirements. A different middleware proposing distributive environment
exist – RMI, Jini, DCOM, CORBA. The application can use different middleware at the
same time as well the application should be completely independent of the communication
API. This facilitates system maintenance and separate communication code from business
code and user interface code. A changing the communication API without impacting other
system code allows two clients accessing the system, one using RMI and the other Jini for
example. Middleware transparency (abstractions that capture those elements of the
application specific to the middleware and allow seamless integration of the abstracted
elements into an application) property proposes changing of middleware without changing
or recompiling applications source code.

Distributed Aspect Pattern defines distribution concerns using aspect for crosscutting
client side (client aspect), server side (server side aspect). Server side aspect crosscut
server component preparing it to respond of remote call. Server side component can
implements Façade and Singleton design patterns [11]. Server side aspect should
intercept initialization of the server component in distributive environment and wrap around
remote call methods using Wrapper-Façade pattern [22] for example. Client side aspects
are responsible for redirecting calls through remote calls to the server through a fixed set
of functions which set internal code to handle discovery events and services, interacting
with the lookup service, search for services, maintaining service leases.

Exception handling aspect is common concern (service) which crosscutted all classes
and components of the application. Proposed by Soares and Borba Pattern of Distribution
aspects [23] integrate exception handling concern as a part of the pattern. We cut this
aspect from the pattern and expand exception handling concern as a common aspect for
all participants in the framework.

ADAPTABILITY ASPECT PATTERN
Adaptability has become strong requirement [19] to middleware and this way to

mobile and wireless applications. Adaptive behaviour implementation needs a clear
concern about adaptability, which will affect final application to responds appropriately to
context changes. Contextual information obtained from new sources may change and lead

- II.17-3 -

International Conference on Computer Systems and Technologies - CompSysTech’2004

to different applications behaviour. Adaptive distributed application design requires
separating adaptability concerns from other concerns, which will improve reuse and
maintainability. Using aspects makes the application adaptive in a modularised and non
invasive way.

Adaptability of the system requires differentiating between client set of aspects and
server side client aspects. Additionally to this we have a common set of aspects common
to client and server.

Changing contextual information should not cause a significant impact on the system
as well the adaptability functionality might be either plugged in/out and also turned on/off,
because the ways to access the context and the behaviours triggered by environment
state may change a lot.

Wireless and mobile terminals add additional requirement – the application can be
implemented in any platform, from embedded devices, such as cellular phones, to
enterprise applications.

In order to support adaptability we need aspects, which are able to crosscut some
application execution points and change their normal execution. A module for monitoring
the context changes they interact with will be responsible for support context change data
to the core functionality units. A group of auxiliary classes collect adaptation functionality
and perform the application changes. Auxiliary classes are used to avoid requiring all
developers to know an AOP language and to avoid code tangling in the adaptive behavior
implementation. The auxiliary classes interact with a module responsible for obtaining
dynamic data specifying how the application should adapt in a specific situation and this
way we increase level of flexibility.

The Adaptability Aspects architectural design pattern [9] identifies five basic
participants. Core application enclose main application functionality – business processes,
GUI, etc. Adaptability aspects implement the adaptability concern and control and modify
the behaviour of the base application and specify how the functionalities should be
changed to adapt to contextual changes. The different (adaptation) tasks could be
delegated to the auxiliary classes. In order to provide adaptive behaviour aspects use
auxiliary classes. This approach improves reuse and don’t requires from the developers of
this module to know an AOP language and to develop auxiliary classes independently.
System architect specify just an interfaces and functionality of these classes. The aspects
invoke methods of auxiliary classes. Auxiliary classes communicate with the adaptation
data provider module, which consists of classes responsible for providing data for dynamic
adaptations according to context changes, in order to obtain dynamic data for the
adaptation. The same context change can lead to different behaviours in different
moments according to the data provided by this module. These classes can be organized
as an Adaptive Object-Model (AOM) [27]. Context manager module is responsible for
monitoring and analyzing context changes and triggering adaptive actions implemented by
the aspects as well aspects can call it in order to obtain information about the context. Its
implementation can be based on a variation of the Observer pattern [11], or on its
implementation with aspects [12]. In this way, new mechanisms for accessing the context
can be easily supported without significant impact on the application.

NATURALLY EMERGED ASPECTS
Many exceptions of all kinds are thrown in a distributed application, variety of forms of

interruptions and failures could occur also. An aspect to trap all uncaught exception is very
useful. A service monitor is aspect that monitors interactions between clients and servers.
Each client and each server may choose its personal monitor.

Concerns like fault-tolerance, caching, object transmission on demand can be
included and integrated to the framework using appropriate aspects. This will increase
system robustness and efficiency.

- II.17-4 -

International Conference on Computer Systems and Technologies - CompSysTech’2004

CONCLUSIONS
Integrated pattern framework architecture for distributed adaptive wireless

applications have been presented. The architecture increase modularity of application
through separating distribution and adaptability concerns into aspects, which is completely
separated of the core system code. Separation makes maintenance and extensibility of the
system easy to manage – changing the communication API has no impact in the system
code. Adapting the communication protocols to a new distributed middleware requires to
rewrite or to add new distribution aspects, which respect API of new communication
middleware. Distribution aspects make middleware transparent for the application. Object-
oriented techniques don’t provide appropriate exception handling mechanism of the
distributed application. As a structural part of the communication aspects is a trusted
secure connection, which provides privacy of the user communication. Secure aspects
makes application independent from used secure protocols.

Exception handling concern allows exception handling to be modified without
impacting original system source code as well distributive and adaptive aspects.

Testing is an important process during software development. Separation of concerns
AOP provides allows tests to be done and design separately just for functional
requirements. Proposed architecture imposes following structure of the software team :
“core functionality developers”, “test designers” (they don’t need to be familiar with AOP),
and “aspect developers”, which are responsible for the aspect tests and implementation.

In addition proposed architecture allows incremental implementation of application.
Part of the functionality could be implemented and tested and then mentioned aspects can
be elaborated as well application can built from existing (third party) components which are
tied in final application by the adaptive and distributed aspects.

REFERENCES
[1] Aksit, M and M. Bergmans, Composing Synchronization and Real-Time

Constraints. Journal of Parallel and Sdistributed Computing 36, pp. 32-52, 1996
[2] Aksit, M., B. Tekinerdogan, and L. Bergams. Achieving adaptability through

Separation and Composition of Concerns. In max Mmuhlhauser editor, Special Issues in
Object-Oriented Programming, ECOOP’96, Dpunkt-Verlag, 1997.

 [3] Birov, D. V. Zhelyazkov, Mobile Banking - Interdisciplinary Approach,
Proceedings of 30th Spring Conference of Union of Bulgarian Mathematicians, Borovetz,
April 8 - 11, 2001, pp. 253 – 257

[4] Birov D., Aspects, Patterns And Component Models Orthogonality, National
Conference with International Participation "Electronica 2004", Sofia, Bulgaria, May 21-22,
2004.

[5] Bollert, K. On Weaving Aspects. Position paper at the ECOOP’99 workshop on
Aspect-Oriented Programming, June 1999.

[6] Cugola, G., C. Ghezzi and M. Monga}, Coding Different Design Paradigms for
Distributed Applications with Aspect-Oriented Programming}, Workshop su Sistemi
Distribuiti: Algoritmi, Architetture e Linguaggi WSDAAL, L'Aquila, Italy, 1999

[7] Cohen, G., J. Chase, and D. Kaminsky. Automatic program transformation with
JOIE. In Proceedings of the USENIX 1998 Annual technical Conference, pp. 167-178,
Berkeley, USA, June 15-19 1998.

[8] Dantas, A, P. Borba. Developing Adaptive J2ME Application using AspectJ
[9] Dantas, A, P. Borba. Adaptability Aspects: An Architectural Pattern for Structuring

Adaptive Applications with Aspects, Third Latin American Conference on Pattern
Languages of Programming Sugarloaf-PloP 2003,

[10] Elrad, T., R. E. Filman, and At. Bader. Aspect-Oriented Programming.
Communications of the ACM, 44(10):29{32, October 2001.

- II.17-5 -

International Conference on Computer Systems and Technologies - CompSysTech’2004

[11] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1996.
[12] Hannemann, J., and G. Kiczales. Design pattern implementation in Java and

AspectJ. In Proceedings of the 17th ACM conference on Object-oriented programming,
systems, languages, and applications, pp. 161–173. ACM Press, 2002.

[13] Keller R. and Urs Holzle, Binary Component Adaptation. In Eric Jul, editor,
ECOOP’98 – Object-oriented Programming, LNCS 1445, pp. 307-329, Springer, 1998.

[14] Kiczales, G. Aspect-Oriented Programming. 1997. Procedings of ECOOP,
Springer Verang. LNCS 1241.

 [15] Kiczales, G. AspectJ: Aspect-oriented Programming using Java Technology.
JavaOne Conference, June 2000.

[16] Kiczales, K., J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.M. Loingtier,
and J. Irwin, Aspect-oriented programming, In Mehmet Aksit and Satoshi Matsuoka,
editors, ECOOP’97 – Object-Oriented Programming 11th European Conference, Finland,
LNCS 1241, pp. 220-242, Springer-Verlag, New York, NY, June 1997.

[17] Kennens, P., S. Michiels, F. Matthijs, B. Robben, E. Truyen, B. Vanhaute, W.
Joosen, and P. Verbaeten. An AOP Case with Static and Dynamic Aspects. In ECOOP’98
Workshop on Aspect-oriented Programming Brussel (Belgium), July 1998.

[18] Lopes, C. D: A Language Framework for Distributed Computing. Ph.D.
Disertation, College of Computer Science, Northeastern University, Boston, 1997.

[19] Lyytinen, K., and Y. Yoo. Issues and challenges in ubiquitous computing:
Introduction, Communications of the ACM, 45(12):62–65, 2002.

[20] Mezini, M., and K. Ostermann, Object Creation Aspects with Flexible Aspect
Deployment.

[21] Oreizy, P. , M. M Gorlick., R. N. Taylor, D. Heimbigner, G. Jonhson, N.
Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An architecture-based approachto
self- adaptive software. IEEE Intelligent Systems, 14(3):54–62. (1999).

[22] Schmidt, D., M. Stal, H. Rohnert, and F. Buschmann. Pattern{Oriented Software
Architecture, Vol. 2: Patterns for Concurrent and Networked Objects. Wiley & Sons, 2000.

[23] Soares, S. and P. Borba, OaDA: A Pattern for Distribution Aspects, proceedings
of the SugarloafPLoP Conference pp. 87 – 99, 2002

[24] Tarr, P. and H. Ossher. Hype/J user and Installation manual, IBM T. J. Watson
Research center, Yorktown heights, NY, USA, 2000

[25] Tarr, P. H. Ossher, W. Harrison, and S. Sutton. N Degrees of separation: Multi-
dimensional Separation of Concerns. In ACM, editor, Procedings of the 1999 International
Conference onn Software Engineering, pp. 107-119, Los Angeles, CA, USA, 1999.

[26] Waldo, J., G. Wyant, A. Wollrath, and S. Kendall, \A note on distributed
computing," in Mobile Object Systems, vol. 1222 of Lecture Notes in Computer Science,
pp. 49-64, Springer-Verlag, Berlin, 1997.

[27] Yoder, J.. W. and R. Johnson. The adaptive object-model architectural style. In
Working IEEE/IFIP Conference on Software Architecture 2002(WICSA), Montreal,
Quebec, Canada, August 25-31 2002.

[28] Zhang, Ch., H. Jacobsen. Aspectizing Middleware Platforms, technical report,
Univ. of Topronto, Computer Systems Research |Group, CSRG-466, Jan. 2003

ABOUT THE AUTHOR
Ass.Prof. Dimitar Birov, PhD, Faculty of Mathematics and Informatics, Sofia

University, Phone: +359 2 8161 510, Е-mail: birov@fmi.uni-sofia.bg.

- II.17-6 -

mailto:birov@fmi.uni-sofia.bg

	INTRODUCTION
	ASPECT ORIENTED PROGRAMMING
	DISTRIBUTED ASPECT PATTERN
	ADAPTABILITY ASPECT PATTERN
	NATURALLY EMERGED ASPECTS
	CONCLUSIONS
	REFERENCES

