
International Conference on Computer Systems and Technologies - CompSysTech’2004

Pattern-Based Architectural Design Process Model

N. Lévy, F. Losavio

Abstract: The identification of quality requirements is crucial to develop modern software systems,

especially when their underlying context is changing or depending over time. Much work has been done on
functional requirements specification, however nonfunctional requirements have been only superficially
considered. Moreover, methods for architectural design focus on quality requirements; however their
specification and traceability with respect to the system’s functionality is not clear. The goal of this work is to
outline a pattern-based architectural design process model focused on quality requirements engineering.

Key words: process model, quality requirements engineering, architectural design, architectural
patterns

1 INTRODUCTION
Software systems are requested by organizations, customers or clients to solve some

of their specific problem. A document or “cahier des charges”, describing the problem
contains the business requirements and it is given by the client to the developers of the
system. From this informal document, the software system requirements must be
elicitated. Many techniques, such as the development of the Use case model [14], have
been employed to identify users’ requirements, which are generally called functional
requirements. They are evaluated by the users when the system is executing in its final
operation environment by effectiveness, safety, productivity and satisfaction issues [6].
However, at this stage it can be very expansive to correct any deficiency of the system.
The fulfilment of the main final system’s goals is based on the accomplishment of internal
and external quality properties, which are derived from the system’s nonfunctional
requirements, constraining the execution of the global system’s functionality. The
specification of nonfunctional requirements has only recently drawn the attention of the
software community, since modern applications are based on the quality of the services
offered. Terms like requirements engineering and quality requirements engineering are
now being employed. However, the capture or elicitation, specification and measure of
requirements are still open problems. On the other hand, architectural design identifies the
key strategies for the large-scale organization of the system under development [8]. An
architectural style [12] is a starting point for further refinement or transformation.
Architectures are the baseline on which a software system is articulated. They are
solutions to particular problems described in detail, without ambiguity, and organized so
that they can be understood and reused [5]. The transition from one abstraction level to
another is not straightforward. The MDA (Model Driven Architecture) approach is an
attempt to fill in this gap. Methods have been developed for architectural design [2, 4] and
this step is now included in general software development frameworks [8]. On the other
hand, all these methods consider that nonfunctional requirements are crucial for
architectural design, especially when the application must respond to critical issues and to
a changing environment. However, the specification and usage of requirements that drive
the architectural decisions is not clear. The problem of identifying nonfunctional
requirements and the related quality properties (quality requirements) needed to guarantee
the accomplishment of the overall system’s functionality is in general not addressed.
Important issues such as the problem specification derived from the “cahier des charges”,
the requirements (functional and nonfunctional) elicitation, specification and measurement,
the notation used to express the problem and the solutions (architectural patterns) in terms
of the problem’s requirements, the requirements completeness and consistency [10], must
be considered by a sound software development process, to guarantee software
engineering best practices.

The main goal of this work is to outline the modeling elements concerned with the

architectural design process, where the engineering of quality requirements, the problem

- II.1-1 -

International Conference on Computer Systems and Technologies - CompSysTech’2004

definition and the reuse of existing solutions are crucial issues. We propose an approach
to architectural design focusing on the problem to be solved [9]. The problem is described
in terms of its functional and nonfunctional requirements, elicitated from the “cahier de
charges” of the customer. A quality model [6] is used to specify the quality properties
related with the problem’s domain. At each step of the process, an architectural pattern is
chosen on the basis of a quality property addressed by the pattern. A first solution is
obtained by application of the selected pattern as a response to this quality property. The
architecture is modeled in UML 2.0 [14]; functional and nonfunctional requirements are
expressed using components interfaces and tags, providing a sound standard
documentation. Consistency and correctness of the requirements can be checked using
formal techniques.

The structure of this paper is the following: Section 2 describes the definition of the
architectural patterns which are used in the process. The pattern-based architectural
design process model is described in Section 3. The conclusion presents final remarks.

2 ARCHITECTURAL PATTERNS
Several patterns libraries are available [3, 5, 13]. These libraries describe the

patterns focusing on the solutions proposed. But the problem description is only informally
described [7]. As a consequence, it is really difficult to choose the adequate pattern to
solve a current problem. We aim at providing helps to guide and document the application
of architectural patterns. To do so, we add to the actual descriptions the precise definition
of the problem part with both functional and nonfunctional requirements [9].

The pattern structure usually contains several clauses concerning both the Problem
part and the Solution part. The problem is described within several clauses:
• Specific design problems are informally described in the Intent clause. We explicitly

include the Problem functionality. A scenario may be given in the Motivation clause.
• Participants are classes or object already existing that can be used as parameters of

the pattern. They are partially described or defined in the Structure.
• The Applicability clause contains a list of situations in which the pattern can be applied.

In addition, we add the following information:
• In the Context clause, the nonfunctional requirements.
• The new Quality clause contains a quality model [6, 11] related to the problem context.

It is used to associate quality characteristics to functional and nonfunctional
requirements. Goals may be assigned to each characteristic as a ranking: high,
medium, low. They may guide the choice of a solution according to nonfunctional
requirements priorities.

Example of an architectural pattern description
Pattern Name: Repository (based on Shared Memory [12]).
Problem definition.

• Intent: Several components of a software system need to communicate directly or indirectly, that is exchange
(share) potentially large and evolving data in order to meet system requirements.

• Functional requirements: data sharing (Figure 1).
Structure of the problem :

- II.1-2 -

Figure 1. Problem: Data sharing

Context: Communication in a distributed environment
• Components are executed on different processors, notifications mechanisms are generally implemented to

notify the concurrent components of any change of the shared repository.
• Additional mechanisms need to be provided to implement the control part. They depend on the application

characteristics and the execution platform.

*

*

Software component Provides data
Requires data

International Conference on Computer Systems and Technologies - CompSysTech’2004

• Nonfunctional requirements and quality model (Table 1):

o Data must be completely and correctly transmitted.
Quality characteristic: reliability, maturity (robustness)

o Limited transmission time.
Quality characteristic: efficiency, time behavior (performance)

o Communication must be flexible to meet changing requirements, since relationships between
components can evolve statically and dynamically.
Quality characteristic: maintainability, changeability (flexibility)

o Components can be changed or replaced over time:
Quality characteristic: reliability, consistency

Quality Characteristics Nonfunctional
requirements Reliability Efficiency Maintainability

Data must be completely
and correctly transmitted

- maturity: mechanisms to
avoid failures should be
introduced to assure
robustness
- Attribute: presence of a
mechanism
- Metrics: Boolean
- Goal: High

Limited transmission time - performance with respect
to time behavior
- Attribute: latency
- Metrics: percentage [0..1]

Communication must meet
changing requirements

 - changeability flexibility of
the components
relationships
- Attribute: size
- Metrics: measure of
complexity

Components can be
changed or replaced over
time

- consistency: a
mechanism (e.g. to replace
the interface of the
component) must be
provided
- Attribute: presence of a
mechanism
- Metrics: Boolean
- Goal: High

Table 1: Quality model for data sharing in a distributed context

The UML architectural description is decorated with tags denoting the characteristics from the Quality Model.

Structure of the problem (Figure 2):

- II.1-3 -

Figure 2. Data sharing in a distributed context

Structure of the solution in a distributed environment (Figure 3):

• A set of software components, containing the knowledge of the domain, communicate to each other
to meet system requirements. They do not know each other (indirect communication); they are only
defined by their needs to perform the computations (their inputs) and the results they can provide
(their outputs). When a component produces some information that is of interest for other
components, it stores it in the shared repository. The other components will retrieve it if needed.

• A repository that is accessible by every component (read and write accesses). This repository can
store all the data that need to be exchanged by components during system execution.

*

*

Software component

Reliability (consistency): Goal High

Provides data
Requires data

Reliability (maturity): Goal High
Efficiency (time behavior)
Maintainability (changeability)

International Conference on Computer Systems and Technologies - CompSysTech’2004

 - II.1-4 -

 Figure 3. Data sharing with Repository in a distributed context

3 THE ARCHITECTURAL DESIGN PROCESS MODEL

The SPEM (Software Process Engineering Metamodel Specification) notation [14] in
Figure 4 is used to represent our architectural design process model (process package).
The model elements involved are also specified.

Requirements are the base on which the software development process is built. In our

approach they can be elicitated using a four step process [10]. A classification of
requirements has been added to facilitate the identification of the nonfunctional
requirements and derive the corresponding quality properties [11]. This method supports

Repository

 *
Software component

Reliability (consistency): High
Reliability (availability): Low
Maintainability (decoupling): High

1

Reliability (maturity): High Reliability (maturity): High
Efficiency (time behavior): Medium
Maintainability (changeability): Low

Relation of quality
rCahier des

charges
equirements

with functionalities

 Our Architectural design

Software Architect

Identification of business requirements

Identification of nonfunctional requirements

 Architecture refinement. This activity is applied iteratively for each quality
characteristics, until all of them have been considered

Identification of quality characterstics for each functionality

 First definition of the architecture

Where: is an activity that may involve several steps,

 is a document and is an UML model both

used or produced during the process,

 is a tool used by the process

Quality
Model

for problem
domain

Use case
Model

Sequence
and
StateChart
Diagrams

Model of the
architecture

ISO 9126-1
standards

Patterns
Library

Figure 4. Architectural design process model package

International Conference on Computer Systems and Technologies - CompSysTech’2004

two phases to perform the early stages of the software life cycle in a systematic way,
namely requirements elicitation and formal specification development. It starts with a
brainstorming process where the problem domain and the requirements are described in
natural language [10]. The basic idea behind the proposed architectural design process is
to focus on the problem and not to go straight to the design of its solution [1, 7]. In our
case, the problem statement is characterized by both its functional and nonfunctional
requirements. The functional requirements are generally derived from the user’s needs
and the nonfunctional requirements are more related with the problem’s environment or
context, which can have different views according to the stage of the development, such
as the problem’s real world and the system’s operational environment. Each functionality is
associated with a quality goal that must be satisfied to ensure the accomplishment of the
functionality in the final software system, running in a specific operational environment.
Moreover, when a nonfunctional requirement is formulated, it implies that a new
functionality or implicit functionality, such as the handling of transient connections, has to
be considered in the applications designed for such an environment.

Software Architect

 - II.1-5 -

 The quality properties related to functional and nonfunctional requirements are
specified in the quality model associated to the problem domain (see Table 1). The
solutions can introduce new quality features that must be added to this quality model. At
the end of this process, the architecture has been developed satisfying the nonfunctional

Identification of business requirements

Identification of nonfunctional requirements

Identification of quality characteristics
for each functionality

 First definition of the architecture

Use case Model

ISO 9126-1 standards

Cahier des Charges

Patterns
Library

Sequence Diagram
and State Charts

Quality Model for
problem domain

Relation of quality
requirements with
functionalities

Model of the
architecture Architecture refinement

Figure 5. Architect activity diagram

International Conference on Computer Systems and Technologies - CompSysTech’2004

requirements. The complete pattern-based architectural design process is presented in
Figure 5 as the activity diagram of the Architect.

4 CONCLUSION
In this paper, we have outlined the modeling elements involved in an architectural

design process, which uses quality requirements engineering and focuses on the problem
definition and the reuse of existing solutions. We observe that standards that are now
recommended in software engineering best practices are useful tools, providing in general
a rich documentation. However, there is a need for a “mature” literature on standards. The
lack of standard patterns library is still a serious drawback to architectural design.

5 REFERENCES

[1] Alexander C. The timeless way of building, Oxford University Press, 1979.
[2] Bosch J. Design and Use of Software Architecture, Addison Wesley, Harlow, England, 2000.
[3] Buschmann F., Meunier R., Rhonert H., Sommerlad P., Stal M. Pattern-Oriented Software
Architecture. A System of Patterns, John Wiley & Sons, New York, 1996.
[4] Clements, P., Kazman, R. and Klein, M. “Evaluating Software Architecture. Methods and Case
Studies”. SEI Series in Software Engineering. Addison-Wesley, 2002.
[5] Gamma E., Helm R., Johnson R.. Vlissides J. Design Patterns. Elements of Reusable Object-
Oriented Software, Addison Wesley, Reading, Massachusetts, 1995.
[6] ISO/IEC 9126-1 “Software Engineering - Product Quality. Part 1: Quality Model”, 2001.
[7] Jackson, M., Problem Frames, Addison Wesley, Harlow, England, 2001.
[8] Krutchen P. The Rational Unified Process, Addison Wesley, Reading, Massachusetts, 1999.
[9] Levy N. Losavio F. Architectural Choices for Dependable Systems, to appear in ICSE-WADS
2004 proceedings, Edinburgh, May 2004.
[10] Levy N., Marcano R,, Souquières J., From requirements to formal specification using UML and
B, International Conference on Computer Systems and Technologies – CompSysTech’2002.
[11] Losavio F., Chirinos L. Matteo A., “Identifying Quality-Based Requirements”, Information
Systems Management (ISYM), Auerbach Publications, Vol. 21, No. 1 (15-21), Winter 2004.
[12] Shaw M., Garlan D., Software Architecture. Perspectives on an Emerging Discipline, Prentice
Hall, New Jersey, 1996.
[13] Schmidt D., Stal M., Rhonert H., Buschmann F., “Pattern-Oriented Software Architecture,
Patterns for Concurrent and Networked Objects”, Vol 2, Wiley, Chichester, 2000.
[14] UML Resource Page, http://www.omg.org/UML

ABOUT THE AUTHORS
Prof. Nicole Lévy, PRISM, Université de Versailles, Phone: +33 139 25 43 12, Е-mail:

Nicole.Levy@prism.uvsq.fr
Prof. Francisca Losavio, LaTecS, Universidad Central de Venezuela, Phone: +58 212

753 69 84, Е-mail: flosav@cantv.net

- II.1-6 -

http://www.omg.org/UML
mailto:nlevy@prism.uvsq.fr
mailto:flosav@cantv.net

