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 Abstract: The superscalar processor is instruction-level parallel (ILP) machine, capable to issue and 
execute simultaneously several instructions in parallel. The main limitations for the superscalar performance 
advantage come from the dependencies between instructions. In this paper we evaluate the influence of the 
different kinds of dependencies between instructions over the performance of the superscalar processors, 
using  SIMAN simulation environment. Description of the model and simulation results are reported. 
Conclusions and direction for possible future work are given. 
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INTRODUCTION  
 The term superscalar refers to a machine that is designed to improve the 
performance of the execution of scalar instructions. In most applications, the bulk of the 
operations are on scalar quantities and the superscalar approach represents an important 
step in the evolution of high-performance general-purpose processors. 
 The superscalar processor is instruction-level parallel (ILP) machine with multiple 
pipelined Execution Units (EUs), capable to issue and execute simultaneously several 
instructions in parallel. The number of EUs defines the degree of parallelism of the 
superscalar processor and determines how many instructions can be issued mostly in one 
cycle. 
 The main limitations for the superscalar performance advantage come from the 
dependencies between instructions. There are three possible kinds of dependency – data, 
control and resource dependencies. The success of the superscalar approach depends on 
the ability of the processor to discover and resolve these dependencies.  
 In this paper we evaluate the influence of the different kinds of dependencies 
between instructions over the performance of the superscalar processors with SIMAN 
simulation environment. 
 

FORMULATION OF THE TASK 
 The idea is to accept some base structure for a superscalar processor with given 
degree of parallelism, number and kind of EUs, layout of the pipelines in EUs and to 
develop a SIMAN model of the processor.  The model is studied through instruction load 
with given distribution of the weights of the different groups of instructions. In the first 
phase the model runs are repeated for different cases: without any instruction 
dependencies, with false data dependencies alone, with true data dependencies 
additionally included, with control dependencies additionally included. For simplicity we 
accept that resource dependencies are resolved by the use of enough EUs. The number 
of executed instructions for fixed period per case is measured and reported. In the second 
phase of the simulation we introduce consecutively specialized hardware for detecting and 
resolving the different dependencies. The model runs reflect the use of shelving for true 
data dependencies, of register renaming for false data dependencies and of branch target 
address cash (BTAC) with two bits branch prediction for control dependencies. The 
measured number of executed instructions for any case is compared with the results from 
the first phase and conclusions for the influence of the instruction dependencies over the 
superscalar performance are formulated.  
 

DESCRIPTION OF THE MODEL 
 The model is created by the means of SIMAN simulation environment. Some part of 
the model block diagram, showing the Integer and Branch pipeline stages, is illustrated in 
Figure 1. Following the full block diagram, the two files MOD and EXP are created for 
subsequent model runs.  
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Fig.1 Simulation Model of Integer and Branch Pipelines 

 
SIMULATION RESULTS 

 Some assumptions have been accepted for the simulation experiments.  
The modeled superscalar structure is very close to the structure of the IBM 

PowerPC 601 with some improvements, part of which were introduced in the later model 
PowerPC 620. The degree of parallelism is 4 instead of 3; the Integer/Logical units are 2 
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instead of 1 with 4 pipeline stages; the Load/Store, Branch and Floating-Point units remain 
single with 5, 2 and 6 pipeline stages respectively; the Look-ahead Instruction Window can 
be increased up to 16 entries.  

The accepted workload instruction distribution is: 45% - integer/logical instructions, 
25% - load/store instructions, 25% - conditional branch instructions, 5% - floating-point 
instructions. 

As mentioned before the simulated dependencies resolution techniques are: 
shelving for true data dependencies, register renaming for false data dependencies and 
branch target address cash (BTAC) with two bits branch prediction for control 
dependencies. 

The model runs are simulated for 10 000 processor cycles and the number of the 
executed instructions is reported for each case. The results are shown in the following 
tables and diagrams. 

 
Table 1. Performance degradation due to dependencies 

 
 Scalar 

processor 
Superscalar 
processor 

without 
dependencies 

With false  
data 

dependencies 

+ true data 
dependencies 

+ control 
depend. 

 

Instructions 
Executed per 
10000 cycles 

10 000 40 000 32 459 26 797 20 765 

 
 

 
Fig 2. Superscalar performance degradation 

 
 The superscalar processor performs 4 times faster than the simple scalar processor 
and without instruction dependencies achieves full utilization of the EUs. However, the 
inclusion of the instruction dependencies impedes its processing and with all kinds of 
dependencies the degradation of the performance is almost twice (table 1).  
 The next table (table 2) shows the results in the second phase when the mentioned 
techniques for dependencies resolution are introduced and simulated. 

 
Table 2. Performance improvement with dependencies resolution 

 
 Register renaming Branch prediction Shelving 

Instruct. Window - 8 21 885 24 500 28 958 
Instruct. Window -16 22 736 25 723 30 393 
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Fig 3. Resolution of dependencies 
 

The renaming eliminates completely the false data dependencies and improves the 
performance with about 25%. It leads to enlargement of the pipelines with one stage. The 
accepted scheme for branch prediction provides 90% accuracy and improves the 
performance with about 28%. The shelving provides full speed of the processor despite of 
the presence of true data dependencies and improves its performance with about 25%. 
With the utilization of all three techniques the superscalar performance is about 3/4th of the 
theoretical limit. Further improvement can be achieved only by the means of additional 
static parallel code optimisation. 
 

CONCLUSIONS AND FUTURE WORK 
 The simulation experiments prove the essential influence of the instruction 
dependencies over the performance of the superscalar processor. Their presence 
invalidates the effect of the use of the multiple EUs if no special techniques are introduced 
for detecting and resolving them. With extra hardware for coping with these ILP limitations 
good results can be achieved, not far from the theoretical ones, supposing enough 
instruction parallelism is available in the program code. This latter parameter can be 
improved through static parallel code optimization.  
 This work can be developed further by studying the superscalar processors with 
different structures, with different instruction distributions and with different techniques for 
dependencies resolution. Also, the scope of ILP processors can be enlarged. Possible 
fields of interest with similar approach are the performance issues in the fine-grained   
multithreaded architectures, i.e. simultaneous multithreaded processors (SMT), chip 
multiprocessors (CMP) and symmetric multiprocessors (SMP).  
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