
International Conference on Computer Systems and Technologies - CompSysTech’2004

- I.3-1 -

Dependencies Evaluation in Superscalar Processors

Vladimir Lazarov, Maria Marinova

 Abstract: The superscalar processor is instruction-level parallel (ILP) machine, capable to issue and
execute simultaneously several instructions in parallel. The main limitations for the superscalar performance
advantage come from the dependencies between instructions. In this paper we evaluate the influence of the
different kinds of dependencies between instructions over the performance of the superscalar processors,
using SIMAN simulation environment. Description of the model and simulation results are reported.
Conclusions and direction for possible future work are given.
 Keywords: Superscalar Processor, Instruction dependencies, Simulation, Performance evaluation.

INTRODUCTION
 The term superscalar refers to a machine that is designed to improve the
performance of the execution of scalar instructions. In most applications, the bulk of the
operations are on scalar quantities and the superscalar approach represents an important
step in the evolution of high-performance general-purpose processors.
 The superscalar processor is instruction-level parallel (ILP) machine with multiple
pipelined Execution Units (EUs), capable to issue and execute simultaneously several
instructions in parallel. The number of EUs defines the degree of parallelism of the
superscalar processor and determines how many instructions can be issued mostly in one
cycle.
 The main limitations for the superscalar performance advantage come from the
dependencies between instructions. There are three possible kinds of dependency – data,
control and resource dependencies. The success of the superscalar approach depends on
the ability of the processor to discover and resolve these dependencies.
 In this paper we evaluate the influence of the different kinds of dependencies
between instructions over the performance of the superscalar processors with SIMAN
simulation environment.

FORMULATION OF THE TASK
 The idea is to accept some base structure for a superscalar processor with given
degree of parallelism, number and kind of EUs, layout of the pipelines in EUs and to
develop a SIMAN model of the processor. The model is studied through instruction load
with given distribution of the weights of the different groups of instructions. In the first
phase the model runs are repeated for different cases: without any instruction
dependencies, with false data dependencies alone, with true data dependencies
additionally included, with control dependencies additionally included. For simplicity we
accept that resource dependencies are resolved by the use of enough EUs. The number
of executed instructions for fixed period per case is measured and reported. In the second
phase of the simulation we introduce consecutively specialized hardware for detecting and
resolving the different dependencies. The model runs reflect the use of shelving for true
data dependencies, of register renaming for false data dependencies and of branch target
address cash (BTAC) with two bits branch prediction for control dependencies. The
measured number of executed instructions for any case is compared with the results from
the first phase and conclusions for the influence of the instruction dependencies over the
superscalar performance are formulated.

DESCRIPTION OF THE MODEL
 The model is created by the means of SIMAN simulation environment. Some part of
the model block diagram, showing the Integer and Branch pipeline stages, is illustrated in
Figure 1. Following the full block diagram, the two files MOD and EXP are created for
subsequent model runs.

International Conference on Computer Systems and Technologies - CompSysTech’2004

- I.3-2 -

Fig.1 Simulation Model of Integer and Branch Pipelines

SIMULATION RESULTS

 Some assumptions have been accepted for the simulation experiments.
The modeled superscalar structure is very close to the structure of the IBM

PowerPC 601 with some improvements, part of which were introduced in the later model
PowerPC 620. The degree of parallelism is 4 instead of 3; the Integer/Logical units are 2

International Conference on Computer Systems and Technologies - CompSysTech’2004

- I.3-3 -

instead of 1 with 4 pipeline stages; the Load/Store, Branch and Floating-Point units remain
single with 5, 2 and 6 pipeline stages respectively; the Look-ahead Instruction Window can
be increased up to 16 entries.

The accepted workload instruction distribution is: 45% - integer/logical instructions,
25% - load/store instructions, 25% - conditional branch instructions, 5% - floating-point
instructions.

As mentioned before the simulated dependencies resolution techniques are:
shelving for true data dependencies, register renaming for false data dependencies and
branch target address cash (BTAC) with two bits branch prediction for control
dependencies.

The model runs are simulated for 10 000 processor cycles and the number of the
executed instructions is reported for each case. The results are shown in the following
tables and diagrams.

Table 1. Performance degradation due to dependencies

 Scalar

processor
Superscalar
processor

without
dependencies

With false
data

dependencies

+ true data
dependencies

+ control
depend.

Instructions
Executed per
10000 cycles

10 000 40 000 32 459 26 797 20 765

Fig 2. Superscalar performance degradation

 The superscalar processor performs 4 times faster than the simple scalar processor
and without instruction dependencies achieves full utilization of the EUs. However, the
inclusion of the instruction dependencies impedes its processing and with all kinds of
dependencies the degradation of the performance is almost twice (table 1).
 The next table (table 2) shows the results in the second phase when the mentioned
techniques for dependencies resolution are introduced and simulated.

Table 2. Performance improvement with dependencies resolution

 Register renaming Branch prediction Shelving

Instruct. Window - 8 21 885 24 500 28 958
Instruct. Window -16 22 736 25 723 30 393

0
5 000

10 000
15 000
20 000
25 000
30 000
35 000
40 000

superscalar false + true + control

10 000 ycles

International Conference on Computer Systems and Technologies - CompSysTech’2004

- I.3-4 -

Fig 3. Resolution of dependencies

The renaming eliminates completely the false data dependencies and improves the
performance with about 25%. It leads to enlargement of the pipelines with one stage. The
accepted scheme for branch prediction provides 90% accuracy and improves the
performance with about 28%. The shelving provides full speed of the processor despite of
the presence of true data dependencies and improves its performance with about 25%.
With the utilization of all three techniques the superscalar performance is about 3/4th of the
theoretical limit. Further improvement can be achieved only by the means of additional
static parallel code optimisation.

CONCLUSIONS AND FUTURE WORK
 The simulation experiments prove the essential influence of the instruction
dependencies over the performance of the superscalar processor. Their presence
invalidates the effect of the use of the multiple EUs if no special techniques are introduced
for detecting and resolving them. With extra hardware for coping with these ILP limitations
good results can be achieved, not far from the theoretical ones, supposing enough
instruction parallelism is available in the program code. This latter parameter can be
improved through static parallel code optimization.
 This work can be developed further by studying the superscalar processors with
different structures, with different instruction distributions and with different techniques for
dependencies resolution. Also, the scope of ILP processors can be enlarged. Possible
fields of interest with similar approach are the performance issues in the fine-grained
multithreaded architectures, i.e. simultaneous multithreaded processors (SMT), chip
multiprocessors (CMP) and symmetric multiprocessors (SMP).

REFERENCES
 [1] Pegden D., Shannon R., Sadowski R. Introduction to Simulation Using SIMAN,
McGraw-Hill, NY, 1990.
 [2] Sima Dezso, Terence Fountain, Peter Kacsuk. Advanced Computer
Architectures, A Design Space Approach. Addison Wesley Longman, 1997.
 [3] Stallings William. Computer Organization and Architecture, Designing for
Performance. Prentice-Hall International Inc., 1996.

 ABOUT THE AUTHORS
 Prof. PhD. Vladimir Lazarov, Institute for Parallel Processing, Bulgarian Academy of
Sciences, Phone: +359 2 736 156, e-mail: lazarov@bas.bg
 Assist. Prof. Maria Marinova, Department of Computer Systems, TU Sofia - Branch
Plovdiv, Phone: +359 32 659 705, e-mail: mroidova@hotmail.com

0

5 000
10 000

15 000

20 000

25 000
30 000

35 000

renaming branch prdiction shelving

IW-8
IW-16

