Contents
International Conference on Computer Systems and Technologies - CompSysTech’2003

A Training Software Model of an Interrupt System

Anelia Vasileva, Angel Smrikarov

Abstract: The paper justifies the necessity to introduce the students from the ‘Computer Systems and
Technologies’ degree course to the structure and way of operation of the interrupt system — one of the
important components of the processor. Analysis of the basic functionality of an example interrupt system is
presented, an existing interrupt system is selected as a prototype of the training model and the arguments
for its selection are proposed. The paper also describes the implemented model and its features. The work
with the model will enable students to comprehend the way of operation of the interrupt system and it will be
also used to check and assess their knowledge.

Key words: Virtual Laboratory, Training Software Model, Simulation, Interrupt System.

INTRODUCTION

The interrupt system is a basic component of each processor. In general, it could be
said that the main task of the processor can be considered as selecting and handling the
interrupt requests and that each currently executed program is actually a concrete interrupt
handling routine, except the system initialization program. This makes the role of the
interrupt system exceptionally important and its initialization — a very responsible task. The
functioning of the whole computer system largely depends on the correct solution of this
problem.

From the above presented it follows that the future specialists on computer systems
and technologies should be familiarized with the structure and way of operation of the
modern processors’ interrupt systems.

One of the ways for achieving this goal is including a software training model of an
Interrupt system in the virtual laboratory on “Computer organization” [1], a basic course in
the curricula of a Bachelor in Computer Systems and Technologies.

The first step when designing a model of this type is to solve the following tasks:

1. Specifying the basic functionality of the interrupt system.

2. Specifying the developer’s activity for initialization of the system.

3. Selecting an existing interrupt system as a prototype of the future training model.

The basic functions of the interrupt system [2] can be reduced to:

e defining the active edges or levels of the signals, accepted as interrupt
requests;
defining the priority of each one of the interrupt requests;
enabling / disabling of separate requests;
saving the incoming interrupt requests;
saving the current processor status;
switching the control to the interrupt handler routine;
e restoring the processor status after completion of the handling routine.

In general, interrupts are caused by events, which are external to the central
processor and require immediate processing. Interrupts are provided primarily as a way to
improve processing efficiency — for example when the processor communicates with
external devices, which are much slower than it [3]. To ensure faster and more effective
interrupt requests handling, the modern processors support interrupt vectors that define
the initial address of each one of the interrupt handler routines and allow direct switch of
the control to the corresponding one. In addition, assigning a priority to the interrupt
requests guarantees the execution of the most urgent one in case several requests come
simultaneously.

Otomov
Contents

International Conference on Computer Systems and Technologies - CompSysTech’2003

The initialization of the interrupt system is reduced to loading constants, specified by
the programmer, in the following registers:

e the interrupt requests register and particularly in the bits which determine if
the correspondent flag will be set by an edge or level;

e the interrupt priority register;

e the interrupt enable register.

The processors Pentium Ill and Pentium 4 with Intel IA-32 architecture [4] support an
interrupt system that handles 17 predefined interrupts and 224 user defined, called
maskable interrupts, separated in three groups: external hardware interrupts, internal
hardware interrupts and exceptions or software interrupts. It is obvious that because of its
complexity this interrupt system is not the appropriate prototype for a training model,
targeted to fourth-semester students.

The interrupt system of 89C51 — one of the basic single-chip microcontrollers of
MSC51 series [5] receives and handles 5 interrupt requests — 2 external and 3 internal
(from the timer/counters and the serial port), as for each one an interrupt vector is
supported at the beginning of the microcontroller's program memory. These requests are
hardware, but could be software simulated. The receipt of an interrupt request causes
triggering the corresponding flag — in other words — setting one of the triggers of the 8-bit
registers TCON and SCON. Enabling / disabling and priority assigning of the requests is
provided by setting the triggers of the 8-bit registers IE and IP. Figure 1 shows that this
Interrupt system has comparatively simple structure and this makes it an appropriate
prototype for the training model.

T 6 5 4 3 Z 1 0 76 5 4 3% 21 0 Havanax
IE lEa Es[ETIERIETOERS TP P$ [PTIPEIPTORHN ampecH
I Encox
e I ey TMPHOPHTET
[] » * 2003
«H
Sl
S — QO0E
1 i]|] oms
b -
o e e! *oll [COtB
B | o023
teont| & sl a4 3[2 1] o | i 1
Al T
TF [TFX IE1| ITL[IEQ{ITD L il Hucze
] I B . L MPHOPHTET
THZ1 THCO l l 0003
INTO [-]
" olly . CO0B
Wi | °[N S
—01 — l
— L Q0B
0|1 | *
—L Q/-I——-r'/: ;\L
ICONT 6 5 4 3 2 1) O | — 0023
1|

Figure1 Structural diagram of the interrupt system of 89C51

Another circumstance supporting the selection of 89C51 interrupt system as a
prototype is the fact that the course “Computer organization” has links to the “Single-chip
microcontrollers” considering the MCS51 series.

International Conference on Computer Systems and Technologies - CompSysTech’2003

LAYOUT

In order to be effective as a learning tool and to be compatible with the other models
in the Virtual Laboratory on Computer organization, the training model of the interrupt
system should meet the requirements, specified in [1] and in terms of user interface, to be
conformable with the basic principles of Human Computer Interaction (HCI). Not only
should the model illustrate the structure of the interrupt system, but it should also enable
the generation of concrete tasks for initialization, executed by the learners through a
sequence of interactive actions. Besides, the model should enable the simulation of
incoming interrupt request and control of learner's knowledge about the order of
processor’s actions, performed during the interrupt requests handling.

The analysis of the interrupt system of the single-chip microcontrollers of MSC51
series allows drawing the conclusion that the training model should consist of interrupt
request register (IR), whose bits will be set when the corresponding interrupt request has
arrived, interrupt priority register (IP) and interrupt enable register (IE) for assigning a
priority to each one of the interrupt requests and their enabling / disabling. The external
interrupt requests should be received by level or by edge of the incoming signal and this
should depend on the content of two of the bits of IR.

The implemented model is a Windows’ 9x, 2000, XP, NT application of size about
500KB, developed using the visual programming environment Delphi 5.

When starting the program, a window containing the structural diagram of the
interrupt system (figure 2), and another one with randomly generated tasks for its
initialization (figure 3), open on the screen. The second window remains active on the top
until completion of the first stage of work with the model, including familiarizing with the
tasks and execution of the necessary actions for the initialization of the interrupt system.

S
Hauanuu agpecu
ofofofolojofofof Pm offofofofolofofo| pn Bucok
’_’ NpUHOpHTET
s Bu3No
e s
e — TP 11
i Br3no
N o % N — Bram
I — Branz
—
= = il .
% npu:::'.r(m
I BnaNo
e ot % = Bu3M1
Brano
o = Bran1
sl i - Br3Mn2
4§rs3 peme: 00:00 [| 5 Nponnaxu
4 Br3n2
01 — < Br3m
& Buani}——o 1L— € Brant |

Figure2 A window containing the structural diagram of the interrupt system

International Conference on Computer Systems and Technologies - CompSysTech’2003

Interrupr syztem - imtialization

Initialize the interrupt spstem according to the following requirements:

Interrupt request Status I Priority I
External interrupt request 0 [Ex-IR0] enabled | low
External interrupt request 1 [Ex-IR1] dizabled . low
Internal interrupt request 0 [In-1R0] enabled low
Internal interrupt request 1 [In-161] dizabled low
Internal interrupt request 2 [In-1R2] dizabled low

E xternal interrupt request 0 [Ex-IB0] to be received by front.
E xternal interrupt request1 [Ex-IR1] to be received by front.
Perform all the necessary actions for handling In-IR0.

Figure3 A window with tasks for initialization of the interrupt system

By default all requests are disabled and low priority assigned, as |IE and IP registers
are reset. The learner has to enable the requests, pointed in the task window by clicking
on the corresponding bit of IE. On wrong action a warning message appears and the
mistake is counted out in the field “Mistakes”. On a consecutive wrong action, the mistake
is counted out and a message, hinting the correct action appears. Clicking on a bit of IE
register sets it and turns the corresponding switch on, and clicking on the highest bit —
“‘enable all interrupt requests” turns all the switches, connected to it, on. A correct click on
a bit of IP register sets it and the corresponding switch position changes from “Low” to
“High” priority, the connection to the low priority vector table becomes inactive and the
connection to the high priority vector table becomes active. When one of the external
interrupt requests, according to the assigned task, has to be received by edge, the learner
has to “set” the appropriate bit of IR register by clicking on it.

Only if the interrupt system initialization is completed, the learner can “send” the
request, specified in the task window, by clicking the appropriate button. After submitting
the request, a button “Continue” appears. Clicking the button causes opening a window
(fig. 4) where the learner has to order in a correct sequence all the actions, performed by
the processor during the submitted interrupt request handling.

The list of actions appears in the right side of the window. The sequence of items is
randomly generated and changes on each new window opening. The learner has to fill in
the empty fields via drag-and-drop operations. When attempting to put a wrong list item in
a field, a warning message appears and the text returns on its previous position. This part
of the model does not support messages, hinting the correct action. After filling all the
fields with the correct sequence of actions, an “End” button appears. Clicking on the button
closes the window and generates a message containing information about the total work
time with the model and the number of mistakes. Finally the program is automatically set in
initial status and a new task is assigned to the learner.

International Conference on Computer Systems and Technologies - CompSysTech’2003

O6cnyxBaHe HA 3aABKA 38 NPeKbCBaHe | XI'
lMNonpenete B npagWnHa NOCAEA0BATENHOCT AEHCTBMATA, M3NBLAHABAHU DT NpoLecopa NpM o6cnyxsaHe Ha Bu3M1.
1 M2ntaHaes Ce TEKYWATE MHETRYKUMA OT rNagHaTa
nporpasa.
2 B nporpamHo HeQOCTBNEH PEMMCTER CE SEN0MHA NPHOPMTETET HE
3BABKATA.
3 ChOBp#AHHETO HA CTEKOEWA YKAZaTE/ CE UBENHYSES C
E0KMHHLA.
4 ChObpKEHHETD HA NPOrPaMHKMA BR0aY C8 3aNHCES B KNETKA OT
CTEKE C 80QEC. COYEH OT CTEKOEMA YKEIaTEN.
5 ChOBPKEHHETO HE HAKOM NMPOrpaMHD O0CTBNHKM PECMCTRK CE
JENWCES B CTEKE Ha BAQSCH, COYEHK 0T CTEKOEWA YKa3aTen.
6 Hynupsa ce gnarsT Ha 284BKATE 38 NPEKECEAHE,
7 Onpenens ce HEYaNHWAT BO0EC HE NPOrpaMaTs, oSCNyKESLE
3BABKATA 38 NPEKLCEAHE.
g HauanHWaT agpec Ha NporpamaTa, 0GCNYKEala 28ABKATE 238
MNPpEKECEEHE C8 3aNMCEs B NPOrPaMHKMA Bpoad.
g KMzntnHABS Ce NporpamMara, 06CNYHEalla 38dBKaTa 38
npekLCeaHe.
10 ChObp#EEHMETO HA CTEKOEMA UKE3ATEN 08 HAMANABE C©
E0WHHLA.
1 BtacTaHoBABE CE8 2aNMCAHOTO B CTEKA ChALKEHME Ha
MNPOrPaMHO GOCTEOHWUTE PEFMCTAM.
12 BtacTaHOBABS C& SaNMCAHOTO B CTEKE CEOLMIKEHME HE
MPOrpaMHYa Spoay.
13 M2nEAHeHWeTO HA rNaBHaTE NPOrpaMa NEoLE MESES OT MACTOTO
HE NpeKECEAHETO .
o [s vpenise 00| % Kooh

Figure4 A window with a list of actions, necessary for interrupt request handling

CONCLUSIONS AND FUTURE WORK

The implemented software training model gives an opportunity to illustrate the
structure and way of operation of an exemplary interrupt system — from the initialization to
the concrete interrupt request handling. The model allows random generation of different
tasks for initialization and list of action, whose execution (respectively ordering) allows
controlling the learner’s knowledge.

In the future the model could be modified by adding a new window, where the learner,
after ordering in a correct sequence the list of actions for interrupt request handling, will
have to simulate the corresponding sequence of necessary control signals for performing
these actions.

International Conference on Computer Systems and Technologies - CompSysTech’2003

REFERENCES

[1] Vasileva,A., A.Smrikarov, T.Hristov. A Conceptual Model of a Virtual Laboratory
on “Computer Organization”. Proceedings of the CompSysTech’2002, Sofia, 20-21 June
2002.

[2] NleseHTtan,/l. BbBegeHve B MukponpouecopuTe — anapaTtHO W NporpamHo
ocurypsiBaHe, nporpammpane. TexHuka, Codums, 1982.

[3] Stallings,W., Computer Organization & Architecture — Designing for performance,
Pearson Education, 2003.

[4] 1A-32 Architecture Software Developer’s Manual. Intel Corporation, 2001.

[5] Cwmpukapos,A.,, LU.Bacunes, W.UankoB, C.CmpukapoBa. EaHounnosu
MukpokomnoTpu, AsaHrapg NMpuHT, Pyce, 2000.

ABOUT THE AUTHORS
Anelia Vasileva, MSc, Department of Computer Systems and Technologies, University of
Rousse, Phone: +359 82 888 276, E-mail: ASVasileva@ecs.ru.acad.bg.
Assoc.Prof. Angel Smrikarov, PhD, Department of Computer Systems and Technologies,
University of Rousse, Phone: +359 82 888 249, E-mail: ASmrikarov@ecs.ru.acad.bg.

Contents

Otomov
Contents

	INTRODUCTION
	The interrupt system is a basic component of each processor. In general, it could be said that the main task of the processor can be considered as selecting and handling the interrupt requests and that each currently executed program is actually a concre
	�
	CONCLUSIONS AND FUTURE WORK
	The implemented software training model gives an
	REFERENCES

