
International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

Object-Oriented Scientific Visualization

Galina Istatkova

Abstract: In this paper C++ classes for function visualization in MFC Windows program are described.
Classes are developed in Microsoft C++ Visual. Using these classes 3D polygonal approximation of function
can be rendered as color map using Windows GDI or as wireframe, coloured, flat or smooth shading surface
using OpenGL. Computing normal vectors for the enlightenment of function surface is discussed. Spline
interpolation and saving function image to JPEG files are discussed. Flat and smooth function images
generated by Demo program are given.

Key words: Object-oriented scientific visualization, 3D Function Image, flat and smooth shading,
OpenGL, C++ Visual.

INTRODUCTION
Function visualization is a routine operation in scientific applications, but is heavy

enough for programming. Function visualization was developed as separate module -
collections of C++ classes that can be used in many applications. These classes are
developed using Microsoft C++ Visual and intended for object-oriented MFC program in
Windows. The basic classes are CXYRegGrid and CXYZFun. Class CXYRegGrid is used
for visualization of 2D function based on Windows GDI (Graphics Device Interface).
Regular X-Y grid with arbitrary combination of linear and logarithmic scales is created by
methods of this class. 3D function can be rendered in X-Y grid as colourmap. Class
CXYZFun is intended for 3D rendering of u=F(x,y). Using OpenGL u=F(x,y) can be
rendered as wireframe, coloured, flat or smooth shading surface. OpenGL is an standard
procedural software interface for producing 3D graphics originally developed by Silicon
Graphics[4]. After Windows NT 3.5 OpenGL is part of Microsoft Windows. Using
CXYRegGrid u=F(x,y) can be rendered as colourmap. The basic goal of these classes
development is significantly decreasing the development time of scientific MFC program in
Windows. In this paper, 3D function rendering using CXYZFun and CXYRegGrid classes
are described.
1. Creating Polygonal Approximation of function

Class CXYZFun doesn't use MFC root class CObject as base class. Instead of it
structure LAPPARAM1 is used as base class. LAPPARAM1 parameters (min and max
colour, size of grid, step over the grid) and some others data-members of class are set by
constructors. For calculating the examples of 3D function surfaces some simple functions
such as sinv x2+y2, x2/2p+y2/2q, x2/p-y2/q, are defined in CXYZFun. Pointers to these
functions and some others parameters are saved in static table. Entry in this table is:

Typedef struct tag FUNENTRY{
bfun pfun;// pointer to function
char funname[80];// analytic function definition
WRECT rc;// size of grid
double h;} FUNENTRY;

Type of pointer to function is:
typedef double (*bfun)(double, double);
Polygonal approximation of function is calculated over the regular coordinate grid in

(X, Z) plane. Coordinates of vertices are stored in three objects of class CDoubleArray:
m_xreg (x coordinate) m_yreg (z coordinate), m_ureg (y coordinate corresponded to
function value). Function vertices are calculated with ComputeRegGrid(void). The part of
code is:

double *px,*py,*pu; // pointers to m_xreg, m_yreg, m_zreg
px = m_xreg; py = m_yreg; pu = m_ureg;
double x,y,min,max; // min and max value of function
min = max = (*m_pfun)(wrc.xmin,wrc.ymin);
y = wrc.ymin;
for (int i = 0;i < m_m; i++){
 x = wrc.xmin;

Otomov
Contents

International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

 for (int j=0;j<m _n;j++){
 *pu = (*m_pfun)(x,y); // calculate u= f(x,y) for [i,j]
 if (*pu < min) min = *pu;
 if (*pu > max) max = *pu;
 pu++;
 *px++ = x; *py++ = y;
 x += h;}
 y += h;}
To calculate function defined in another module (imported function)

ComputeRegGrid(const FUNENTRY& funpar) is used. This method sets an entry for
imported function in the function table and then calls ComputeRegGrid(void).

To visualize data calculated in another program SetData(int n, int m, double h,
WREC wrc, double* x,double* y, double* u) method is used. This function sets m_xreg,
m_yreg, m_zreg from arrays x,y,z. Created or imported polygonal approximation of
function can be visualized as colour map using CXYRegGrid object or as wireframe,
colored, flat or smooth shading surface using OpenGL.
2. Color Map Representation

CXYregGrid and CXYZFun objects are embedded in document or view class in MFC
program. For colour map representation, CXYRegGrid object must be created according to
function parameters. Code for setting parameters of CXYRegGrid object m_fungrid for
CXYZFun object m_fun embedded in document class is:

GRIDPARAM gr = pDoc ->m_fungrid.GetParam();//Get GRIDPARAM parameters
CString str("Function is ");
str += pDoc ->m_fun.GetFunName();
strcpy(gr.subtitle.title,str);// Set analytic function definition into subtitle
gr.leg.crmax = pDoc ->m_fun.GetMaxColor();//Set values for ColorMap Legend
gr.leg.crmin = pDoc ->m_fun.GetMinColor();
gr.leg.max = pDoc ->m_fun.GetMaxValue() ;
gr.leg.min = pDoc ->m_fun.GetMinValue() ;
gr.wrc = pDoc->m_fun.GetWorldWindow();// Set X-Y grid rectangle with function regular grid size
pDoc ->m_fungrid.Set(gr); // Set new X-Y grid parameters
Structure GRIDPARAM includes all parameters of CXYRegGrid and is used as base

class of CXYRegGrid. Pointer to CXYRegGrid object is passed as parameter in
DrawRegPointS for colourmap representation:

void CXYZFun::DrawRegPointS(CDC * pDC, CXYRegGrid* pgrid, BOOL border/*=TRUE*/)
{
 for (int i=m_m -1;i >= 0 ;i--){
 for (int j=m_n -1;j >= 0; j --){
 DrawRegPoint(pDC, pgrid, i, j);}// Draws coloured rectangle for [i,j] point of function grid
 }
To render coloured rectangle for [i,j] point DrawRegPointS calls DrawRegPoint:
void CXYZFun::DrawRegPoint(CDC * pDC, CXYRegGrid* pgrid,int i,int j)
{
 double x,y,u;
// CDoubleArray is linear and for two dimensional grid linear index must be calculated
 int index = m_n*i + j;
 x = m_xreg[index]; y = m_yreg[index]; u = m_ureg[index];
 CBrush brush; COLORREF cr;; WRECT wrc;
 cr = ConvertToColor(u);// Convert function value to colour
 brush.CreateSolidBrush(cr);
 wrc.xmin = x-h/2.0f; // define WRECT for color rectangle
 wrc.xmax = x+h/2.0f; wrc.ymin = y-h/2.0f; wrc.ymax = y+h/2.0f;
 pgrid -> DrawWRECT(pDC, wrc,&brush, 0);// DrawWRECT is CXYRegGrid primitive for colormap
}
Rectangle colour is calculated by function ConvertToColor(double u) that converts

function value to R,G,B components. Code for calculating is:
// Get R,G,B components of min(crmin) and max(crmax) colour
BYTE rmin = GetRValue(crmin), bmin = GetBValue(crmin), gmin = GetGValue(crmin);

International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

BYTE rmax = GetRValue(crmax), bmax = GetBValue(crmax), gmax = GetGValue(crmax);
double du ;
du = (m_umax - m_umin > 0.0f)?((u-m_umin)/(m_umax-m_umin)): (0.0f);
BYTE r = rmin + (BYTE)(du*(double)(rmax-rmin));// Calculate colour components
BYTE g = gmin + (BYTE)(du*(double)(gmax-gmin));
BYTE b = bmin + (BYTE)(du*(double)(bmax-bmin));
COLORREF cr = RGB(r,g,b);

3. Wireframe and coloured model of surface
Wireframe and coloured model are the simplest ways for surface visualization in

OpenGL: The three or four neighbouring points are connected to define OpenGL polygon
primitive. Using GL_LINE attribute for polygon, wireframe model is created. For coloured
model, GL_FILL attribute is used. Vertex colour is calculated using function value (as in
color map). Hidden-surface removal is done by OpenGL using the depth buffer
(sometimes called a z-buffer)[4]. One method RenderFun is used for wireframe and
colouerd models:

void CXYZFun::RenderFun(GLenum fillmode, GLenum polygonstyle)
{
 int index;
 GLfloat v0[3], v1[3], color[3];

::glPolygonMode(GL_FRONT, fillmode); // Set drawing mode for polygon
 ::glPolygonMode(GL_BACK, fillmode);
 for (int i = 0;i < m_m-1; i++){
 ::glBegin(polygonstyle);
 for (int j=0;j<m_n;j++){
 index = m_n*i + j;// [i,j]
 v0[0] =(GLfloat) m_xreg[index];

 v0[1] = (GLfloat)m_ureg[index];
 v0[2] =(GLfloat)m_yreg[index];
 index += m_n;// [i+1,j]
 v1[0] = (GLfloat)m_xreg[index];
 v1[1] = (GLfloat)m_ureg[index];
 v1[2] =(GLfloat)m_yreg[index];
 ConvertToColor(v0[1],color);
 ::glColor3fv(color);
 ::glVertex3fv(v0);
 ::glVertex3fv(v1); }
 ::glEnd();}
}

4. Flat and Smooth shading of surface using normal vectors
Flat and smooth shading of surface uses OpenGL lighting model. To use the

enlightenment normal vectors to surface must be calculated. Normal vector defines
orientation of surface relative to light sources. OpenGL uses this vector to determine how
much light each pixel of a given surface receives. When one normal is given alongside the
polygon, polygon's pixels are enlightened with the same colour value. The result is known
as flat shading rendering. To realize an even more aesthetic enlightenment, we must give
to OpenGL one normal per every vertex of surface. The result is good looking and is
known as smooth shading rendering. Using the three consecutive vertices of polygon v1 ,
v2, v3, normal n is calculated as cross product:

n = [v1-v2]x[v2-v3].
Vertices of polygon are selected keeping polygon orientation consistent. It is very

important to get the quality of lighting. In CXYZFun method RenderFun_normal() realizes
flat shading using triangles as polygons. The part of code for computing normal vector and
drawing triangle is:

// Compute vector normal
d1[0] = v0[0] - v1[0]; d1[1] = v0[1] - v1[1]; d1[2] = v0[2] - v1[2];
d2[0] = v1[0] - v2[0]; d2[1] = v1[1] - v2[1]; d2[2] = v1[2] - v2[2];
normcrossprod(d1, d2, norm);// This function computes vector normal
 ::glBegin(GL_TRIANGLES); // Render triangle

International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

 ConvertToColor(v0[1],color);
 ::glColor3fv(color);
 ::glNormal3fv(norm);
 ::glVertex3fv(v0);
 ConvertToColor(v1[1],color);
 ::glColor3fv(color);
 ::glNormal3fv(norm);
 ::glVertex3fv(v1);
 ConvertToColor(v2[1],color);
 ::glColor3fv(color);
 ::glNormal3fv(norm);
 ::glVertex3fv(v2);
 ::glEnd();
Flat shading of u = 3sinv x2+y2 is shown in fig.1.
Smooth shading is implemented using quadrangles (fig.2). Algorithm for calculating

normal vectors for all vertices is:
• Calculate the normal for all quadrangles;
• Define four neighbouring quadrangles for [i,j] vertex;
• Average the normal vectors for neighbouring quadrangles;

Fig 1. Flat shading.
5. Spline Interpolation of Function

Smooth and flat shading of 3sinv x2+y2 surfaces (fig.1 -2) are drawn by approximating
them with large number of polygons - 2500. If spline interpolation is used then only a few
control points are needed. OpenGL supports almost all splines in use today, including B-
splines, NURBS (Non-Uniform Rational B-Spline) surfaces, Bezier curves and surfaces,
and Hermite splines[4]. NURBS interpolation for function defined in CXYZFun class is
used in method DrawNurbs2(Glenum mode). DrawNurbs2 uses three function from GLU
(OpenGL Utility Library):
• glMap2f defines NURBS parameters such as number of control points;
• glMapGrid2 specifies the linear grid mappings between the i and j integer grid

coordinates to the u and v floating-point evaluation map coordinates.
• glEvalMesh evaluates a series of evenly spaced map domain values.

International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

Function image can be saved to JPEG file using method
CXYZFun::WriteJPEGFile(char *filename,int Width, int Height). This method use for JPEG
compression dynamic library mkOpenGLJPEGImage. This library can be downloaded from
site www.comp.nus.edu.sg (National University of Singapore, School of Computing).
6. Bounding Cuboid

Bounding cuboid around the function image (fig. 1-2) is implemented in class CParal.
Marker's values are drawing using function DrawString(const char* s) of class
COutlineFont, embedded in class CParal. Class COutlineFont had to be developed
because OpenGL doesn't provide direct font support as Window GDI. There are three
basic ways to output text in OpenGL:

• Creation bitmap for each character of font;
• Creation texture containing an entire character set;
• Creation 3D geometric model for each character of font.

Class COutlineFont uses the third method. 3D geometric model of characters are
created in constructor using OpenGL Windows API wglUseFontOutlines function. This
function creates a display list for every character of font using Windows font model
currently selected in Windows device context. Geometric model coordinates are in
normalized coordinate system [1:0]x[1:0]. Before drawing, character model is scaled
according to the cuboid size and the number of "good" intervals. The number of "good"
interval is defined using Lewart algorithm [3].

Fig. 2. Smooth shading.

7. Demo Program
The main window of Demo program using CXYZFun and CXYRegGrid classes is

shown in fig.1-2. The program uses SDI (Single Document Interface) with two panes.
CXYZFun and CXYRegGrid are embedded objects in document class[2]. Colour map
representation of u=F(x,y) is rendered in the first pane. In the second pane function is
visualized as 3D surface. Three List box contols embedded in CDialogBar control are
intended for function and drawing mode selection. Colors, light and material properties and
some others parameters are set with modal and modeless dialog. Standard MFC CView
class is used as base class in the first pane. Colour map is drawn in function OnDraw. Part
of code is:

International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

pDoc->m_fungrid.Draw(pDC);// m_fungrid is CXYRegGrid object embedded in CDocument class
pDoc->m_fun.DrawRegPointS(pDC,&pDoc->m_fungrid,FALSE);// m_fun is object of CXYZFun
For the second pane, there isn’t base view class in MFC. To use OpenGL in MFC

program, a new view class, such as COpenGLView must be developed[5]. In Internet
various implementation of COpenGLView class can be founded. In the Demo program
COpenGLView class from ClassGL library developed in Solid Graphics
(www.solidgraphics.com). is used. In addition to standard functionality of an OpenGL
window, this class provides several interaction mode interfaces, support for objects
manipulation and navigation in 3D space, printing and scale control methods. Using this
class Demo program realizes zoomin, zoomout, windowing, rotation and animation.
Function surface is rendered in DrawScene – virtual function of COpenGLView class. Part
of code is:

switch (m_renderstyle) // m_renderstyle is currently selected rendering style
{
case NORMALS:
pDoc->m_fun.RenderFun_normal();// Flat shading
break;
case NORMALS4:
pDoc->m_fun.Render_normal4();// Smooth shading
break;
case COLORQUADS:
pDoc->m_fun.RenderFun(GL_FILL,GL_QUAD_STRIP);// Coloured surface
break;
….
}
m_paral->Draw();// render bounding cuboid
Class CXYZFun is independent from COpenGLView class and can be used with

version that is needed for application.
8. Conclusion

CXYRegGrid and some others embedded as objects in it: CLegend (legend window),
CRegScale (linear or logarithmic scale), CTitle(title and subtitle) are collected in Graph2D
library. This library is an object-oriented release of the procedural library, implemented in C
[1]. Graph2D library is intended for 2D applications based on Windows GDI and can be
used by programmer has not special knowledge of computer graphics. Class CXYFun
implemented in Graph2D is 2D analogy of CXYZFun and simplifies y=F(x) rendering. To
use class CXYZFun it is necessary to know some basic conception of OpenGL and how
OpenGL running on a Windows platform. Rendering methods of CXYZFun based on
OpenGL are intended for high-quality 3D graphics application.

REFERENCES
[1] ?????????, ?., ?. ???????. ???????? ?????????? ?? ?? ?? ??????????? ????????? ?? ?????

?? ?????? ??????? ? ??????????. ??????????? ?????????? ? ???????????'95. ??????? ??????
???????. ????? 1995.

[2] ?????????? ?????? ??., Visual C ++, ?????? ???????. ? ? ? ?????-???, 1998, ISBN 954-685-
0025.

[3] ??????, ?.?. ????????? ??????????????? ?????? ?????? ? ???? ????????. ???????????,
14,1983, 76-79.

[4] Nejder, Jackie , Tom Davis and MasonWoo . OpenGL Programming Guide: The Official Guide to
Learning OpenGL, Release 1, Reading, MA: Addison-Wesley, 1993. ISBN 0-201-63274-8. Red Book.

[5] Fosner Ron. – OpenGL Without Pain:Creating a Reusable 3D View Class for MFC. Microsoft
System Journal,1995.

ABOUT THE AUTHOR

Engineer, research worker Galina Istatkova , Institute of Computer and Communication System,

Bulgarian Academy of Science. Phone: 73-29-51(137), GSM - 098 89 30 59, E -mail: g_istatkova@mail.bg.

Otomov
Contents

