
International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

OOP-Anim, a system to support learning of basic

object oriented programming concepts

Micaela Esteves, António Mendes

Abstract: This paper presents OOP-Anim, a system to support learning of basic object oriented
programming (OOP) concepts. For several reasons, programming is a difficult subject for many students,
even in computer science courses. This happens independently of languages and paradigms used. Our
system uses program animation to help students overcome some of the difficulties they usually feel to
master OOP concepts and associated program dynamic.

Keywords: OOP-Anim, Animation, Visualization, Java Animation.

INTRODUCTION
The option for object oriented languages in introductory programming courses is now

common. Our own course has migrated from C to Java in the last few years. However, the
difficulties felt by many students in learning how to program correctly haven’t changed
significantly. Many students continue to find difficult to understand the conceptual issues
involved in programming and algorithmic design. Object-oriented programming concepts
like classes, objects, references and messages are no exception and often many students
fail to master them.

Programs have a dynamic nature, but most learning materials have a static format
(e.g. text books) which makes difficult to explain (and understand) program’s dynamic
behavior. The abstract nature of programming is another source of difficulties, because
many students fail to visualize how programming structures work and how problems can
be solved using them. These and other reasons can explain the level of student failure
common in introductory programming courses.

The object concept is essential to understand object oriented programming paradigm
(OOP). However, our experience teaching OOP with Java shows that students have many
difficulties to understand and visualize how the program works, especially when they need
to work with OOP concepts.

Animation has been proposed as a way to make concrete and visual program’s
dynamics It can be argued that animated views can help students in three central learning
activities: Understand programs; Evaluate existing programs; Develop new programs. This
last activity is the most important and also the most difficult. Many students can
understand programs, but they fail when they have to develop a program to solve some
problem. Based in our experience, we developed an educational environment, OOP-Anim.
It has features designed to help students visualize how their own object oriented programs
work, allowing them to find and correct errors that may exist. Correcting their own mistakes
is a good educational activity, since normally students reach a higher competence and
confidence level after being able to correct all errors and have the program running
correctly.

RELATED WORK
Several software tools have been proposed to support programming teaching and

learning activities. Animation/visualization software systems have been used trying to take
advantage of the potential of human visual system. Those systems are rooted in the
conviction that programs can be better understood when represented graphically when
compared with textual descriptions and representations.

For example, BlueJ [6] is an integrated system including an object-oriented language
and an object-oriented development environment. It was developed specifically for
teaching object-oriented programming to beginners. BlueJ uses UML- like class diagrams
to present a graphical overview of a project structure. It allows the interactive creation of

Otomov
Contents

International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

objects from any given class present in the project. We used a similar approach in OOP-
Anim, as we also present the project structure using UML. More detailed information about
BlueJ is available in the literature [1, 2, 7].

Several studies have been published trying to evaluate how animation could help
programming learning. For example, Kehoe et al. [4] concluded that when students were
allowed to freely use a program animation and other study materials, they tended to use
the animation together with the source code and/or a written explanation. Stasko et al. [5],
used a system that animated data structures, without showing the source code. The
students who used this system said they would prefer to have also a written explanation of
what the algorithm is doing in each moment, and why. This study also concluded that the
students wanted to have control over animation, for example running the program step by
step instead of continuously, or going back to previous steps.

Miyadera et al. [3] reached similar conclusions. They concluded that most students
think it is very important to have written explanations in addition to animations, allowing
them to observe the code, its data structures representation, a brief explanation of what
the program is doing at each step

The approach followed by Miyadera et al. was a major influence in our work, since
we adopted a similar philosophy in our system. This means that OOP-Anim shows the
program code, a representation of its classes and objects and a brief explanation of what
the program is doing at each step.

OOP-ANIM - OBJECTIVES
As stated before, the main objective of OOP-Anim is to support learning of basic

concepts of object orientated programming. It is essentially a visualization and animation
tool that can animate programs created by the students and other common programs,
allowing a better understanding of how they work and facilitating error detection and
correction, since the student can compare how she/he thought the program would work
with how the program really works.

In the first stage of learning OOP-Anim can be useful to animate example programs
previously created by teachers or other students, allowing the student to better understand
the fundamental concepts and how they operate to solve a problem. However, in a later
stage, it is fundamental that students can animate their own programs. Most students find
easy to understand correct basic programs, but things change when they have to create
their own programs. At this stage OOP-Anim can help showing the student how her/his
program works and help to locate, understand and correct bugs. This type of work
generally is very useful for learning.

OOP-ANIM ENVIRONMENT
OOP-Anim has four essential areas. A screen shot of the system is shown in Figure1.

The left side of screen shows the program code. As the program runs, the line currently
being executed is highlighted.
There is an area below the program listing that displays program’s input and output. This
area acts like a terminal window.

The right half of the screen has two main parts. The upper part shows the program
animation. This part is subdivided in three areas, one for a representation of the program
classes, other for objects created during execution and the references used by the
program.

The bottom part shows the buttons used to control the system. It is possible to open
a program to animate, to close the program and clean the animation area, to close the
environment, to start the animation continuously, to pause the animation, allowing the
student to examine its current state, to run the animation step by step (pressing this button
repeatedly, allows the student to run the program at any pace), and to go back to examine
previous program states that are recorded as the animation runs.

International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

Figure 1: OOP-Anim

Finally, there is a status area that displays the program status (running, stopped, or

waiting for input), and a brief explanation of what is happening at every animation stage.
In the animation area the classes are represented by a pink rectangle with the name

of the class written. The objects created during program execution are represented by a
red rectangle that shows the object’s class name, its instance variables (with current
values) and the methods defined in the object (inherited methods and own methods). The
references are represented by a black rectangle with a black ball in the middle.

OVERVIEW
After opening the Java code file, the animation can be started by pressing the

Começar (Start) button. After that the system highlights the main method header.
Simultaneously all the classes that are part of the program are represented in the
animation area (3). This representation includes the hierarchical relations that may exist
between classes. The right mouse button, when pressed over a class, gives access to the
class instance variables and methods (Figure 2).

Figure 2: The class menu

After a few moments the highlight moves to the next code line indicating that the first

instruction will be interpreted and executed. If the instruction implies the creation of an
object, its representation appears in the animation area (3). This process is animated, first
appears the reference representation, then it is the object representation that is created.
As the class – object relation is a central concept, it is very important that the student

(1)

(2)

(3)

(4)

International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

understand it well. The system animates the object creation as follows: Starting from the
object’s class representation, one red rectangle with the same dimensions of the class
moves through the animation area until the objects zone. As mentioned before, the object
representation contains: its class name, its instance variables (with values) and the
methods defined in the object’s class (Figure 3).

Figure 3: Object representation

Another important concept is message processing. When an object receives a
message, this fact is highlighted by a change to red of its reference color. The method
name in the object changes to green stressing that the object is responsible to answer the
messages it receives. After the method is run and its results, if any, are shown in the
corresponding object representation and/or in the output/input area (Entradas/Saídas(2)),
if appropriate. This way the students can follow all the message sending and processing
included in the program.

Figure 4: Message processing

The animation goes through all the program instructions, processing them in turn and
showing its consequences in terms of instance variables values and/or program output.
During execution the student can read some explanatory messages in the control area.
The idea is to give some textual explanations that stress the most important execution
aspects (Figure 5).

International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

Figure 5: Textual notes about program execution

EXAMPLE
To clarify some OOP-Anim features, in this section we present a small utilization

example, using the following main program:

The program creates three objects from classes Picture, Circle and Square. OOP-
Anim starts the animation showing the code and the three classes representations as
shown in Figure1. After a moment the system highlights the first line of code. In this
example it creates an object of the class Picture. In the animation area (3) a reference with
the name picture1, is created, the color of the box that represents the class Picture
changes to red and a rectangle with the same dimension appears and moves until the
objects area (Figure 6).

Figure 6: Creating an object

public static void main(String[] args) {
Picture picture1 = new Picture();
Square window;
Circle sun;

window = new Square();
window.changeColor("black");

sun = new Circle();
sun.changeSize(60);

picture1.draw(window,sun);

}

International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

The next two lines of code create non initialized references to objects of classes
Square and Circle. The names of these references are window and sun. This results in the
situation shown in Figure 7. Our objective is to stress the difference between references
and objects. These two concepts are often confused by the students.

Figure 7: A null reference

Next line creates an object that will be referenced by window. The object creation is

animated as described before and after it is created a line is draw connecting the
reference and the object, showing that window now references the new object.

The next line is a message sent to the object referenced by window to execute its
method changeColor with the parameter “black”. To show the steps involved the window
reference color changes to red and a red ball goes from the reference to the object. When
it arrives the method changeColor in the object representation changes to green and the
result of its execution is shown (the instance variable color value changes). Finally, the
representations involved change back to its original colors.

The next two lines of code have similar representations to those described above.
The last line orders the object represented by picture1 to execute method draw. Method
execution was already described, but as this method prints the attributes of each object it
receives, those attributes values will appear in the Entrada/Saida (input/output) area, as
shown in Figure 8.

Figure 8: Input/output

International Conference on Computer Systems and Technologies - CompSysTech’2003

- -

CONCLUSIONS
Several studies have been made trying to evaluate the effectiveness of

animation/visualization systems to support the development of programming skills. Many
of them have verified a positive contribution of such systems to students learning,
especially when interactive and multiple representation animation systems are used.

Our work tries to help to overcome some of the most important difficulties our
students feel during object oriented programming learning. We think OOP-Anim will prove
successful when used with our students. However, presently we are in the later
development stage. We plan to have a first version soon and to evaluate that version with
university programming students and teachers. This evaluation will probably result in new
features and corrections to original ones. No educational package can be thought
complete without a good evaluation and field utilization. This is the next step in our project.

REFERENCES
[1] Bergin, J. Fourteen Pedagogical Patterns for Teaching Computer Science, in

Proceedings of the Fifth European Conference on Pattern Languages of Programs
(EuroPLop 2000), Irsee, Germany, July 2000.

[2] Bergin, Joseph, Mark Stehlik, Jim Roberts, and Richard Pattis. Karel ++: A
Gentle Introduction to the art of Object-Oriented Programming. John Wiley & Sons,1997

[3] Miyadera,Y., Huang, N. & Yokoyama, S. (2000). A programming language
education system based on program animation. (IFIP-International Federation for
Information Processing). Pp 258-261..

[4] Kehoe, C., Stasko, T & Taylor, A (199) Rethinking the Evaluation of Algorithm
Animations as Learning Aids: An Observational Study, Graphics, Visualization, and
Usability Center in Georgia Institute of Technology.

[5] Stasko, T., Badre, A.&Lewis, C (1993) Do Algorithm Animations Assist Learning?
An Empirical Study and Analysis, Proceedings of the ACM INTERCHI’93,61-63.

[6] Kölling, Michael. The blueJ Tutorial- Version 1.4
 http//www.blue j.monash.edu/tutorial/tutorial.pdf
[7] Smith, Phillip A. y Webb, Geoffrey I. The Efficacy of a low-level program

visualization tool for teaching programming concepts to novice c programmers. Journal of
Education Computing Research, Vol 22 No 2,2000, p. 187-216

ABOUT THE AUTHORS
Assist. Prof. Maria Micaela G. P. Dinis Esteves, Escola Superior de Tecnologia e

Gestão de Leiria (ESTG), Portugal. Phone: +351 244820300, E-mail:
micaela@estg.ipleiria.pt

Assoc Prof. António José Mendes, Centro de Informática e Sistemas da
Universidade de Coimbra, Portugal. Phone: +351 239790000, E-mail : toze@dei.uc.pt

Otomov
Contents

