
International Conference on Computer Systems and Technologies - CompSysTech’2003

RESOLVING NON-DETERMINISM IN NFA

Ivan Stoyanov, Stoyan Bonev

Abstract: The paper describes the authors’ experience in simulating non-deterministic

finite state automata (NFA) using concurrent programming. The non-determinism is resolved
simultaneously by activating a separate thread for all possible transition paths. The approach
under discussion may be used to implement specific recognizers in the practice of language
processors writing.

Key words: Language Processors, Recognizer, Non-Deterministic Finite State
Automata.

1. Introductory Terms
There exist two alternative approaches to describe formal languages as infinite sets

of character strings [1, 3, 4]: Synthesis and Analysis. The synthetic one is based on the
concept of a grammar used to generate syntax correct sentences. The analytic one is
based on the concept of a recognizer used to scan input strings accepting them as valid
sentences or rejecting them as invalid sentences. The typical recognizer structure includes
an abstract device (primarily implemented as a software routine) known as a finite state
machine (finite automaton) FSA. FSA are classified as deterministic whose transition
function permits one only transition from a concrete state on a certain input symbol and
non-deterministic whose transition function makes possible more than one transition from
a certain state on the same scanned input character.

It is well known that both deterministic and non-deterministic Finite State Automata
may be applied for recognizing the same regular sets. As [1] wrote, “while deterministic
FSA can lead to faster recognizers than non-deterministic FSA, a deterministic FSA can
be much bigger than an equivalent non-deterministic FSA”.

This paper presents a program implementation of a non-deterministic finite state
automata (NFA) using thread techniques to model the concurrency in multiple state
transitions paths.

2. Theory Extract on NFA

The theoretical specification of finite state automata is documented [1, 2, 3 and 4] as
5-tuple formal system. The definition of a non-deterministic FSA is = (Σ, Q, δ, q0, Qf), with
input alphabet Σ, set of internal states Q, transition function δ presenting the mapping of
ΣxQ→2Q (into subsets of Q), an initial (starting) state states q0, and a set of final states Qf.

3. Program Implementation

The practical implementation presented here is based on applying the Object
Oriented Programming principles. The object-oriented model of the NFA implemented
includes definition and processing with single and multiple instances of the classes
described in table 1.

The object-oriented design was chosen to be implemented in Java (jdk1.4.1). Each

state of the automata is a distinct object – an instance of class Node. The only data
members are a name and two flags, showing whether the state is a starting or a final one.

The states of a NFA are connected with arcs - instance of class Arc. Arcs are
transition paths that allow changing of the current state under a certain input character.
Correspondingly, the class Arc has data members showing the source and the destination
Node as well as the input character that is required to make the move (label).

Otomov
Contents

International Conference on Computer Systems and Technologies - CompSysTech’2003

table 1
Class Description Instance
nfa Used for parsing and storing the NFA 5-tuple. single
nfaImpl The main class – contains the actual objects (Arcs and

Nodes) as well as methods for accessing them.
single

Node Represents a NFA state. multiple
Arc Represents a NFA transition path – with source and

destination Nodes.
multiple

nfaThread Тhe parsing thread that is created each time when there is a
non-determinism. Contains the logic of NFA actions. The
most important class.

multiple

Main The entry point of the program. Used for creating the first
parsing thread.

single

Input Helper class for the input that is being parsed. single
Output Helper class for logging information. single

Each time the parsing process encounters an input character that leads to more than

one state, a new nfaThread is created to service the occurred non-determinism:

new nfaThread(this.getStartupData()).start();

The number of threads created on each move is equal to the number of outgoing

arcs with the given label (except one, reserved for the current thread). Since the class
nfaThread extends the base class java.lang.Thread and thus runs in a separate OS-level
thread, each nfaThread may be in a different NFA state at a given moment and may check
a different input character for acceptance. All this is left to the scheduling mechanism of
JVM. However, if the input string is acceptable, one of the threads will unconditionally
reach a final state of the NFA while checking the last character. This is the only condition
for success.

Each thread maintains a list of the nodes passed and passes a copy of this list to any
new threads it creates. As a result, upon acceptance, the thread prints a “winning path”,
i.e. the path that has been followed to reach a final state under the entire input stream.
Note that there may be more that one “winning path”.

if (Input.isEndOfInput(charIndex)) {
 if (currentNode.isFinalNode()) {
 //accept the string
 //print the winning path
 //terminate the program
 }
}

If a certain thread reaches the end of input, while not in a final state at the same time,

it must check if other threads are still working before rejecting the input and terminating the
program. If there are active threads, the thread only terminates itself. The thread acts in a
similar fashion when it does not have arcs to continue with and end of input not reached. If
the thread is the last active one, then it should reject the input and exit the program.

As for the multiprogramming aspect, the simplest synchronization technique known

as immutability is used. The objects in an NFA instance (Arcs and Nodes) are predefined
and not changed during execution.

International Conference on Computer Systems and Technologies - CompSysTech’2003

4. Exploring the NFA

The concept perceived in accordance with the object oriented model described above
permits to build a flexible NFA simulator. The flexibility achieved is based on reading an
input text configuration file when starting an execution. The contents of the input file serve
to initialize the input alphabet, the internal states set, the transition function, the initial
internal state and the set of final internal states.

Fig.1 and table2 present the transition graph and transition table of NFA simulating a
recognizer for strings derived using a regular expression “(a|b)*ab” (a string composed of
letters ‘a’ and ‘b’ terminated by an “ab”)

Figure 1
Table 2

 a b
Q0 Q1, Q3 -
Q1 Q1, Q3 Q2
Q2 Q1, Q3 Q2
Q3 - Qf
Qf - -

b

Q0

Q2

Q3

Q1
a

a

a
a a

b

a

The inpu

[inpu
a,b
[set
q0,q
[tran
q1,q
q1,q
q1,q
,:q4
,:
[initi
q0
[set
q4

The exec

instance. Then
threads are sta
thread writes a

When giv

parsingThr
Path: q0 q1

The path

following inform
spaces):

b

Qf

t configuration file presenting the NFA described above follows:
t alphabet]

of internal states]
1,q2,q3,q4
siton table]
3:,
3:q2
3:q2

al(starting) state]

of final states]

ution starts by reading the configuration file input.nfa and creating an NFA
 the first parsing thread is started on the initial state. Any subsequent
rted indirectly by the initial thread. The program creates a log file and each
 message upon startup, change of state and termination.

en the input string “aaaaaab”, the program yields

ead-6 succeeded!
 q1 1 q1 q1 q3 q4

 displayed is the “winning path” for this execution. The log file generates the
ation (the output of each thread is indented with a specific number of

International Conference on Computer Systems and Technologies - CompSysTech’2003

Thread parsingThread-0 starting from state q0
Thread parsingThread-0 moving to state q1 under input a
Thread parsingThread-0 moving to state q1 under input a
Thread parsingThread-0 moving to state q1 under input a
Thread parsingThread-0 moving to state q1 under input a
Thread parsingThread-0 moving to state q1 under input a
 Thread parsingThread-1 starting from state q3
 Thread parsingThread-1 terminating in stateq3 under input a
 Thread parsingThread-2 starting from state q3
 Thread parsingThread-2 terminating in stateq3 under input a
 Thread parsingThread-3 starting from state q3
 Thread parsingThread-3 terminating in stateq3 under input a
 Thread parsingThread-4 starting from state q3
 Thread parsingThread-4 terminating in stateq3 under input a
 Thread parsingThread-5 starting from state q3
 Thread parsingThread-5 terminating in stateq3 under input a
Thread parsingThread-0 moving to state q1 under input a
Thread parsingThread-0 moving to state q2 under input a
 Thread parsingThread-6 starting from state q3
 Thread parsingThread-6 moving to state q4 under input b

However, given the input “aabb” and the same NFA, the program returns :

 No success - end of input and not in the final state.

with the corresponding log information:

Thread parsingThread-0 starting from state q0
Thread parsingThread-0 moving to state q1 under input a
Thread parsingThread-0 moving to state q1 under input a
Thread parsingThread-0 moving to state q2 under input a
Thread parsingThread-0 moving to state q2 under input a
 Thread parsingThread-1 starting from state q3
 Thread parsingThread-1 terminating in stateq3 under input a
 Thread parsingThread-2 starting from state q3
 Thread parsingThread-2 moving to state q4 under input b
 Thread parsingThread-2 terminating in stateq4 under input b

The string was rejected because it does not terminate with “ab”.

5. Future Development and Conclusion
The non deterministic FSA simulator may be applied when solving problems with non

determinism in different practical areas like language processors design and
implementation. A classical illustration is the well known non determinism in Fortran syntax
where the string

DO 122 I

can be considered both as the beginning of a loop statement like
DO 122 I = 1, 10, 2
 as well as a part of an assignment statements like
DO 122 I = 1.10
DO 122 I = 1

Solving a non-deterministic problem using parallel programming is a real alternative

to the traditional deterministic approach. The authors’ purpose was to show how this can
be done. Better results may be expected and achieved only on a multiprocessor machine.

International Conference on Computer Systems and Technologies - CompSysTech’2003

6. References:

1. Aho A., R.Sethi, J.Ullman, Compilers, Principles, Techniques and Tools,
Addison Wesley Publishing Company, 1986.

2. Bonev S., E.Elmasllari, Implementing Finite State Automata using Object
Oriented Programming, Proc. 15th Int. Conference Systems for Automation of
Engineering and Research SAER 2001, Sep 21-23, Varna, Bulgaria, pp 172-176.

3. Tremblay J.P., P.Sorenson, The Theory and Practice of Compiler Writing,
McGraw Hill Book Company, 1985.

4. Yankov B., Translators and Operating Systems, Sofia, Tehnika Publ., 1993, (in
Bulgarian).

 7. Authors:

Ivan Dimov Stoyanov BS in Computer Science, American University in Bulgaria,
ids200@aubg.bg

Stoyan Bonev, Assoc. Prof., PhD., American Unversity in Bulgaria, sbonev@aubg.bg,
07388416

mailto:sbonev@aubg.bg
Otomov
Contents

	RESOLVING NON-DETERMINISM IN NFA
	Ivan Stoyanov, Stoyan Bonev
	Introductory Terms
	Theory Extract on NFA
	Program Implementation
	Exploring the NFA
	Future Development and Conclusion
	Ivan Dimov Stoyanov BS in Computer Science, American Univers

